BLIP2-图像文本预训练

news2024/9/24 17:09:26

文章目录

  • 摘要
  • 解决问题
  • 算法
    • 模型结构
    • 通过frozen图像编码器学习视觉语言表征
      • 图像文本对比学习(ITC)
      • 基于图像文本生成(ITG)
      • 图文匹配(ITM)
    • 从大规模语言模型学习视觉到语言生成
    • 模型预训练
      • 预训练数据
      • 预训练图像编码器与LLM
      • 预训练设置
  • 实验
    • 引导零样本图像到文本生成
      • 零样本VQA
    • 图像描述
    • 视觉问答
    • 图像文本检索
  • 限制
  • 结论

论文: 《BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models》
github: https://github.com/salesforce/LAVIS/tree/main/projects/blip2

摘要

训练大尺度视觉语言预训练模型成本比较高,BLIP-2,基于现有的图像编码器预训练模型,大规模语言模型进行预训练视觉语言模型;BLIP-2通过轻量级两阶段预训练模型Querying Transformer缩小模态之间gap,第一阶段从冻结图像编码器学习视觉语言表征,第二阶段基于冻结语言模型,进行视觉到语言生成学习;BLIP-2在各种视觉-语言模型达到SOTA。比如在zero-shot VQAv2上超越Flamingo80B 8.7%,也证明该模型可以根据自然语言指引进行zero-shot图像到文本生成。

解决问题

端到端训练视觉语言模型需要大尺度模型及大规模数据,该过程成本大,本文提出方法基于现有高质量视觉模型及语言大模型进行联合训练,为减少计算量及防止遗忘,作者对预训练模型进行frozen,为了将两任务对齐,作者提出Querying Transformer (Q- Former) 预训练,如图1,其将有用视觉特征传递至LLM输出目标文本。
在这里插入图片描述
BLIP-2优势如下:
1、高效利用frozen预训练视觉及语言模型;
2、由于大规模语言模型能力,BLIP-2可以根据提示进行zero-shot图像到文本生成;
3、由于使用frozen单模态预训练模型,BLIP-2与现有SOTA方案相比,计算更加高效;

算法

为了对齐视觉特征到LLM文本空间,作者提出Q-Former,进行两阶段预训练:
1、图像编码器frozen进行学习视觉语言表征;
2、使用frozen LLM进行学习视觉到文本生成;

模型结构

如图2,Q-Former包括两个贡共享self-attention层的transformer子模块:图像transformer(Q-Former左半部分)与frozen image encoder相互作用提取视觉特征;文本transformer(Q-Former右半部分)可作为文本编码器,也可作为文本解码器。
可学习query embedding作为图像transformer输入,通过self-attention层相互作用,通过cross-attention层与frozen图像特征相互作用,query同时通过self-attention层与文本相互作用。根据预训练任务,作者使用不同self-attention mask控制query-text之间交互;作者使用 B E R T b a s e BERT_{base} BERTbase初始化Q-Former,cross-attention层进行随机初始化;
在这里插入图片描述

通过frozen图像编码器学习视觉语言表征

query通过学习提升与text相关视觉表征,受BLIP启发,作者通过3个目标函数,共享相同输入格式及模型参数,每个目标函数通过不同attention mask策略控制query与text之间相互影响,如图2所示;

图像文本对比学习(ITC)

ITC学习对齐图像表征与文本表征,通过比较成对与非成对的图像-文本相似度实现;计算过程如下:
计算image transformer输出query表征 Z Z Z(与可学习query长度相同)与text transformer输出文本表征 t t t 中【CLS】token相似性,选取最大值作为图像文本对相似度,为防止信息泄露,作者使用单模态self-attention mask,query与text不能互相可见;由于image encoder进行frozen,显存释放,可以使用batch负样本而不用像BLIP中使用队列。

基于图像文本生成(ITG)

ITG根据输入图像训练Q-Former生成文本,由于Q-Former不允许image encoder与text token直接交互,文本生成所需信息通过query进行提取,通过self-attention进行传递至text token,因此query需要捕获文本相关所有信息,作者使用多模态因果self-attention mask控制query-text交互,query无法获取text token,当前text token 可获取所有query及其之前text token。作者将【CLS】token替换为【DEC】token 作为解码任务标记;

图文匹配(ITM)

ITM为了学习精细化图像文本匹配,作者使用bi-dirention self-atttention mask,所有query与text相互可见,因此输出的query embedding Z捕获多模态信息,Z通过二类线性分类器获取logit,logit均值为匹配得分,作者使用《Align before Fuse》中难例负样本挖掘策略创建负样本对。
难例负样本挖掘策略:
当负样本的图像文本对有相同的语义但在细粒度细节上不同,那么该样本是难样本。作者通过对比相似度寻找batch内的 hard negatives。对于一个batch中的每一幅图像,作者根据对比相似性分布从相同的batch中抽取一个负文本,其中与图像更相似的文本有更高的可能被采样。同样的,作者还为每个文本采样一个hard negative图像。

从大规模语言模型学习视觉到语言生成

作者将Q-Former与LLM相连,后去LLM的语言生成能力。如图3,FC层映射输出的query embedding Z至LLM的text embedding;基于LLM Q-Former提取到的视觉表征作为soft visual prompt,由于Q-Former已经预训练用于提取对文本有用的视觉表征,减轻LLM学习视觉-文本对齐的负担。
在这里插入图片描述
作者实验两种LLM,decoder-based LLM以及encoder-decoder-based LLM。
对于decoder-based LLM,作者使用language modeling loss进行预训练,frozen LLM进行文本生成;
对于encoder-decoder-based LLM,使用prefix language modeling loss预训练,将text分为两部分,text前半部分与视觉表征concat输入LLM编码器,后半部分作为LLM解码器的生成目标。

模型预训练

预训练数据

BLIP-2使用与BLIP相同数据,129M图片,包括COCO、Visual Genome、CC3M、CC12M、SBU,其中115M来自 LAION400M,使用CapFilt对网图进行生成caption,具体步骤如下:
1、使用 B L I P l a r g e BLIP_{large} BLIPlarge生成10个caption;
2、生成10个caption+原始web caption通过CLIP ViT-L/14模型与对应图像进行相似度排序;
3、选取top2作为该图的caption,以此作为训练数据;

预训练图像编码器与LLM

两个SOTA视觉transformer预训练模型:
ViT-L/14 from CLIP、ViT-G/14 from EVA-CLIP
移除ViT最后一层,使用倒数第二层特征。
LLM模型:
无监督训练的OPT作为decoder-based LLM
基于指令训练的FlanT5作为encoder-decoder-based LLM

预训练设置

第一阶段训练250k step,第二阶段训练80k step;ViT和LLM 转为FP16,FlanT5转为BFloat16,作者发现相对于32-bit,性能无下降;由于使用frozen模型,作者预训练比现在大规模VLP方法计算量都小,在16个A100(40G)上,对于ViT-G和FlanT5-XXL第一阶段训练耗时6天,第二阶段少于3天。

实验

表1展示BLIP-2在各种零样本视觉语言任务上表现,与之前SOTA方法相比,性能得到改善,而且训练参数大量减少;
在这里插入图片描述

引导零样本图像到文本生成

BLIP-2使得LLM具有图像理解能力,同时保留遵循文本提示的能力;作者在视觉promt后增加简单文本promt,图4展示BLIP-2零样本图像文本生成能力,包括:视觉知识推理、视觉共鸣推理、视觉对话、个性化图像到文本生成等。
在这里插入图片描述

零样本VQA

表2表明,BLIP-2在VQAv2及GQA数据集达到SOTA。
表2得到一个有希望的发现:一个更好的图像编码器或LLM模型都将使得BLIP-2性能更好;
基于OPT或FlanT5,BLIP-2使用ViT-G性能超越使用VIT-L;
图像编码器固定,BLIP-2使用大LLM模型性能超越使用小模型;
在VQA上,基于指令训练的的FlanT5性能优于无监督训练的OPT;
在这里插入图片描述
第一阶段预训练使得Q-Former学习与文本相关视觉表征,图5展示表征学习对生成式学习有效性,不进行表征学习,两种LLM模型在零样本VQA任务上性能大幅下降。
在这里插入图片描述

图像描述

表3表明,BLIP-2在NoCaps性能达到SOTA,证明对out-domain图像具有很强生成能力。
在这里插入图片描述

视觉问答

Q-Former的输出以及question作为LLM的输入,LLM生成对应answer,为了提取与问题相关图像特征,作者将question输入Q-Former,通过self-attention层与query进行交互,引导Q-Former的cross-attention层更加关注图中有效区域。表4表明BLIP-2在开放式生成模型中达到SOTA。
在这里插入图片描述

图像文本检索

图文检索不需要语言模型,作者在COCO数据集将图像编码器与Q-Former一起进行finetune,在COCO及Flickr30K数据集进行图像文本检索以及文本图像检索,作者首先根据图文特征相似度挑选128个样本,而后根据ITM score进行排序。
如表5,BLIP-2在零样本图文检索达到SOTA,相对现有方法,得到显著提升。
在这里插入图片描述
表6表明ITG损失对图文检索也有帮助,由于ITG损失版主query提取与文本相关视觉特征。
在这里插入图片描述

限制

当LLM模型使用上下文VQA样本时,BLIP-2并未在VQA任务上提升性能,作者归因于预训练数据集为仅有一对图像文本样本,无法学习一个序列中多个图像文本对之间相关性。
BLIP-2在图像文本生成任务仍存在一些不足:LLM不准确知识,不正确推理路径、对于一些新图像缺少相关信息,如图6所示。
在这里插入图片描述

结论

BLIP-2是一种通用且计算高效的视觉语言预训练方案,使用frozen 预训练图像编码器及LLM,在多个视觉语言任务达到SOTA,也证明了其在零样本instructed image-to-text生成能力。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/372438.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基础夯实,字节内部总结240道算法LeetCode刷题笔记,直呼太全

1、什么是算法算法(algorithm,[ˈlɡərɪəm],计算程序):就是定义良好的计算过程,他取一个或一组的值为输入,并产生出一个或一组值作为输出。简单来说算法就是一系列的计算步骤,用来将输入数据转化成输出结…

从Linux源码角度看套接字的Listen及连接队列

今天就从Linux源码的角度看下Server端的Socket在进行listen的时候到底做了哪些事情(基于Linux 3.10内核),当然由于listen的backlog参数和半连接hash表以及全连接队列都相关,在这里也一块讲了。 Server端Socket需要Listen 众所周知,一个Serv…

archlinux docker配置php5.3

一直在维护一下10年前的老项目,是基于php5.3开发的。一直在使用windows虚拟机在开发php5.3。最近就想尝试在archlinux主系统中开发。 什么是php PHP 是一种广泛使用的通用脚本语言,特别适合 Web 开发,可以嵌入到 HTML 中。 AUR安装php5.3 …

【C语言进阶】了解计算机的程序环境和预处理过程 掌握计算机预处理操作

​ ​📝个人主页:Sherry的成长之路 🏠学习社区:Sherry的成长之路(个人社区) 📖专栏链接:C语言进阶 🎯长路漫漫浩浩,万事皆有期待 文章目录1.编译与链接1.1 程…

WebGPU学习(4)---使用 UniformBuffer

接下来让我们使用 UniformBuffer。UniformBuffer 是一个只读内存区域,可以在着色器上访问。 这次,我们将传递给着色器的矩阵存储在 UniformBuffer 中。演示示例 1.在顶点着色器中的 UniformBuffer 这次我们在顶点着色器里定义一个名为Uniforms的新结构体…

TCP 的演化史-sack 与 reordering metric

就着 TCP 本身说事,而不是高谈阔论关于它是如何不合时宜,然后摆出一个更务虚的更新。 从一个 case 开始。 按照现在 Linux TCP(遵守 RFC) 实现,以下是一个将会导致 reordering 更新的 sack 序列: 考虑一种情况,这两个…

【Spring】谈谈你对IOC和AOP理解(2023最新)

目录一.IOC(Inversion of Control)1.IOC是什么?2.IOC的实现原理二.AOP(Aspect Oriented Programming)1.AOP是什么?2.AOP的实现原理3.说一下AOP都有哪些基本理念?或者是AOP的术语4.Advice(通知)的类型有哪些5.AOP的应用场景6.使用AOP实例(日志…

jvisualvm远程监控Java程序

启用远程监控: 方式一:启动参数进行配置 启动远程应用需指定jmx相关配置 java -jar -Djava.rmi.server.hostname远程服务ip -Dcom.sun.management.jmxremote.port18888 -Dcom.sun.management.jmxremotetrue -Dcom.sun.management.jmxremote.sslfa…

运动耳机推荐、最值得入手的运动耳机清单共享

现在市面上各式各样的运动蓝牙耳机着实让人挑花了眼,怎样才能从纷繁复杂的市场中挑选出专业性、安全性、舒适性等各个方面都做地可圈可点的运动蓝牙耳机可真不是一件易事啊,甚至连不少老朋友都会踩坑,为了能让大家挑到真正的运动蓝牙耳机,为此…

Dev C++ 调试功能详细总结

原文链接: Dev C 调试功能详细总结https://mp.weixin.qq.com/s/H9VwLNcJ0tY3j3265R0_7Q 大家好,我是CodeAllen(康哥),今天是2023年2月25日,继上一篇介绍了我在Windows端经常用来验证代码的工具Dev C的基本…

pytest测试框架——pytest.ini用法

这里写目录标题一、pytest用法总结二、pytest.ini是什么三、改变运行规则pytest.inicheck_demo.py执行测试用例四、添加默认参数五、指定执行目录六、日志配置七、pytest插件分类八、pytest常用插件九、改变测试用例的执行顺序十、pytest并行与分布式执行十一、pytest内置插件h…

【经典蓝牙】蓝牙AVRCP协议分析

协议简介 蓝牙AVRCP协议是蓝牙设备之间音视频的控制协议。定义了音频/视频的控制、浏览、查询、通知等一系列的命令集。常用来蓝牙耳机对手机的音乐进行控制,以及获取手机的音乐信息等场景。AVRCP协议有两个角色,分别是controller(CT&#x…

MFC 使用GridCtrl表格控件

1、以前使用GridCtrl大多作为静态库,但是程序使用的时候体积会很大,有网友询问能不能封装为动态库使用,刚好最近抽空仔细看了一下,封装出来。 2、具体封装过程不再赘述,具体测试如下所示: CGridCtrl m_Gri…

JavaScript Window

文章目录JavaScript Window浏览器对象模型 (BOM)Window 对象Window 尺寸其他 Window 方法JavaScript Window 浏览器对象模型 (BOM) 使 JavaScript 有能力与浏览器"对话"。 浏览器对象模型 (BOM) 浏览器对象模型(Browser Object Model (BOM))…

LeetCode100_100. 相同的树

LeetCode100_100. 相同的树 一、描述 给你两棵二叉树的根节点 p 和 q ,编写一个函数来检验这两棵树是否相同。 如果两个树在结构上相同,并且节点具有相同的值,则认为它们是相同的。 示例 1: 输入:p [1,2,3], q […

【数据结构】手撕红黑树

目录 一、红黑树简介 1、红黑树的简介 2、红黑树的性质 二、红黑树的插入(看叔叔的颜色就行) 1、为什么新插入的节点必须给红色? 2、插入红色节点后,判定红黑树性质是否被破坏 2.1情况一:uncle存在且为红 2.2情…

微信商城小程序怎么做_分享实体店做微信商城小程序制作步骤

各行各业都在用微商城小程序开店,不管是餐饮店还是便利店,还是五金店。都是可以利用微信小程序开一个线上店铺。实现线上跟线下店铺更加全面的结合。维护好自己的老客户。让您的客户给您拉新,带来新客户。小程序经过这几年的快速发展和不断升…

【量化回测必看!】Backtrader保姆级教学+免费行情源 框架介绍

前言 想开始量化学习不知道如何入手?市面上的学习资料太多不知道该怎么看? 博主将从零基础讲解回测框架,一步步完成量化数据源的搭建,让你10天内成为量化高手 博主同时将视频课程内容在B站更新,可以关注“量化NPC”获…

学习 Python 之 Pygame 开发魂斗罗(五)

学习 Python 之 Pygame 开发魂斗罗(五)继续编写魂斗罗1. 加载地图2. 修改角色尺寸和地面高度继续编写魂斗罗 在上次的博客学习 Python 之 Pygame 开发魂斗罗(四)中,我们完成了角色的移动和跳跃还有射击,由…

Redis源码---整体架构

目录 前言 Redis目录结构 前言 deps目录 src 目录 tests 目录 utils 目录 重要的配置文件 Redis 功能模块与源码对应 前言 服务器实例 数据库数据类型与操作 高可靠性和高可扩展性 辅助功能 前言 以先面后点的方法推进无特殊说明,都是基于 Redis 5.0.…