目录
- 一、环境准备
- 1.进入ModelArts官网
- 2.使用CodeLab体验Notebook实例
- 二、数据变换 Transforms
- Common Transforms
- Compose
- Vision Transforms
- Rescale
- Normalize
- HWC2CWH
- Text Transforms
- BasicTokenizer
- Lookup
- Lambda Transforms
通常情况下,直接加载的原始数据并不能直接送入神经网络进行训练,此时我们需要对其进行数据预处理。MindSpore提供不同种类的数据变换(Transforms),配合数据处理Pipeline来实现数据预处理。所有的Transforms均可通过map方法传入,实现对指定数据列的处理。
如果你对MindSpore感兴趣,可以关注昇思MindSpore社区
一、环境准备
1.进入ModelArts官网
云平台帮助用户快速创建和部署模型,管理全周期AI工作流,选择下面的云平台以开始使用昇思MindSpore,获取安装命令,安装MindSpore2.0.0-alpha版本,可以在昇思教程中进入ModelArts官网
选择下方CodeLab立即体验
等待环境搭建完成
2.使用CodeLab体验Notebook实例
下载NoteBook样例代码,.ipynb
为样例代码
选择ModelArts Upload Files上传.ipynb
文件
选择Kernel环境
切换至GPU环境
进入昇思MindSpore官网,点击上方的安装
获取安装命令
回到Notebook中,在第一块代码前加入命令
pip install --upgrade pip
本章节中的示例代码依赖download,可使用命令pip install download安装
pip install download
安装MindSpore2.0.0-alpha版本
conda install mindspore=2.0.0a0 -c mindspore -c conda-forge
安装mindvision
pip install mindvision
导入mindspore
import mindspore
from mindspore import nn
from mindspore.dataset import vision, transforms
from mindspore.dataset import MnistDataset
二、数据变换 Transforms
mindspore.dataset提供了面向图像、文本、音频等不同数据类型的Transforms,同时也支持使用Lambda函数。下面分别对其进行介绍。
import numpy as np
from PIL import Image
from download import download
from mindspore.dataset import transforms, vision, text
from mindspore.dataset import GeneratorDataset, MnistDataset
Common Transforms
mindspore.dataset.transforms模块支持一系列通用Transforms。这里我们以Compose为例,介绍其使用方式。
Compose
Compose接收一个数据增强操作序列,然后将其组合成单个数据增强操作。我们仍基于Mnist数据集呈现Transforms的应用效果。
# Download data from open datasets
url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \
"notebook/datasets/MNIST_Data.zip"
path = download(url, "./", kind="zip", replace=True)
train_dataset = MnistDataset('MNIST_Data/train')
image, label = next(train_dataset.create_tuple_iterator())
print(image.shape)
composed = transforms.Compose(
[
vision.Rescale(1.0 / 255.0, 0),
vision.Normalize(mean=(0.1307,), std=(0.3081,)),
vision.HWC2CHW()
]
)
train_dataset = train_dataset.map(composed, 'image')
image, label = next(train_dataset.create_tuple_iterator())
print(image.shape)
Vision Transforms
mindspore.dataset.vision模块提供一系列针对图像数据的Transforms。在Mnist数据处理过程中,使用了Rescale、Normalize和HWC2CHW变换。下面对其进行详述。
Rescale
Rescale变换用于调整图像像素值的大小,包括两个参数:
- rescale:缩放因子。
- shift:平移因子。
图像的每个像素将根据这两个参数进行调整,输出的像素值为 𝑜𝑢𝑡𝑝𝑢𝑡𝑖=𝑖𝑛𝑝𝑢𝑡𝑖∗𝑟𝑒𝑠𝑐𝑎𝑙𝑒+𝑠ℎ𝑖𝑓𝑡
这里我们先使用numpy随机生成一个像素值在[0, 255]的图像,将其像素值进行缩放。
random_np = np.random.randint(0, 255, (48, 48), np.uint8)
random_image = Image.fromarray(random_np)
print(random_np)
为了更直观地呈现Transform前后的数据对比,我们使用Transforms的Eager模式进行演示。首先实例化Transform对象,然后调用对象进行数据处理。
rescale = vision.Rescale(1.0 / 255.0, 0)
rescaled_image = rescale(random_image)
print(rescaled_image)
可以看到,使用Rescale后的每个像素值都进行了缩放。
Normalize
Normalize变换用于对输入图像的归一化,包括三个参数:
- mean:图像每个通道的均值。
- std:图像每个通道的标准差。
- is_hwc:输入图像格式为(height, width, channel)还是(channel, height, width)。
normalize = vision.Normalize(mean=(0.1307,), std=(0.3081,))
normalized_image = normalize(rescaled_image)
print(normalized_image)
HWC2CWH
HWC2CWH变换用于转换图像格式。在不同的硬件设备中可能会对(height, width, channel)或(channel, height, width)两种不同格式有针对性优化。MindSpore设置HWC为默认图像格式,在有CWH格式需求时,可使用该变换进行处理。
这里我们先将前文中normalized_image处理为HWC格式,然后进行转换。可以看到转换前后的shape发生了变化。
hwc_image = np.expand_dims(normalized_image, -1)
hwc2cwh = vision.HWC2CHW()
chw_image = hwc2cwh(hwc_image)
print(hwc_image.shape, chw_image.shape)
Text Transforms
mindspore.dataset.text模块提供一系列针对文本数据的Transforms。与图像数据不同,文本数据需要有分词(Tokenize)、构建词表、Token转Index等操作。这里简单介绍其使用方法。
首先我们定义三段文本,作为待处理的数据,并使用GeneratorDataset进行加载。
texts = [
'Welcome to Beijing',
'北京欢迎您!',
'我喜欢China!',
]
test_dataset = GeneratorDataset(texts, 'text')
BasicTokenizer
分词(Tokenize)操作是文本数据的基础处理方法,MindSpore提供多种不同的Tokenizer。这里我们选择基础的BasicTokenizer举例。配合map,将三段文本进行分词,可以看到处理后的数据成功分词。
test_dataset = test_dataset.map(text.BasicTokenizer())
print(next(test_dataset.create_tuple_iterator()))
Lookup
Lookup为词表映射变换,用来将Token转换为Index。在使用Lookup前,需要构造词表,一般可以加载已有的词表,或使用Vocab生成词表。这里我们选择使用Vocab.from_dataset方法从数据集中生成词表。
vocab = text.Vocab.from_dataset(test_dataset)
获得词表后我们可以使用vocab方法查看词表。
print(vocab.vocab())
生成词表后,可以配合map方法进行词表映射变换,将Token转为Index。
test_dataset = test_dataset.map(text.Lookup(vocab))
print(next(test_dataset.create_tuple_iterator()))
Lambda Transforms
Lambda函数是一种不需要名字、由一个单独表达式组成的匿名函数,表达式会在调用时被求值。Lambda Transforms可以加载任意定义的Lambda函数,提供足够的灵活度。在这里,我们首先使用一个简单的Lambda函数,对输入数据乘2:
test_dataset = GeneratorDataset([1, 2, 3], 'data', shuffle=False)
test_dataset = test_dataset.map(lambda x: x * 2)
print(list(test_dataset.create_tuple_iterator()))
[[Tensor(shape=[], dtype=Int64, value= 2)], [Tensor(shape=[], dtype=Int64, value= 4)], [Tensor(shape=[], dtype=Int64, value= 6)]]
可以看到map传入Lambda函数后,迭代获得数据进行了乘2操作。
我们也可以定义较复杂的函数,配合Lambda函数实现复杂数据处理:
def func(x):
return x * x + 2
test_dataset = test_dataset.map(lambda x: func(x))
print(list(test_dataset.create_tuple_iterator()))