机器学习和深度学习综述

news2024/9/26 19:51:08

机器学习和深度学习综述

1. 人工智能、机器学习、深度学习的关系

近些年人工智能、机器学习和深度学习的概念十分火热,但很多从业者却很难说清它们之间的关系,外行人更是雾里看花。在研究深度学习之前,先从三个概念的正本清源开始。概括来说,人工智能、机器学习和深度学习覆盖的技术范畴是逐层递减的,三者的关系如 图1 所示,即:人工智能 > 机器学习 > 深度学习。


图1:人工智能、机器学习和深度学习三者关系示意

人工智能(ArtificialIntelligence,AI)是最宽泛的概念,是研发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。由于这个定义只阐述了目标,而没有限定方法,因此实现人工智能存在的诸多方法和分支,导致其变成一个“大杂烩”式的学科。机器学习(MachineLearning,ML)是当前比较有效的一种实现人工智能的方式。深度学习(DeepLearning,DL)是机器学习算法中最热门的一个分支,近些年取得了显著的进展,并替代了大多数传统机器学习算法。

2. 机器学习

区别于人工智能,机器学习、尤其是监督学习则有更加明确的指代。机器学习是专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构,使之不断改善自身的性能。这句话有点“云山雾罩”的感觉,让人不知所云,下面我们从机器学习的实现和方法论两个维度进行剖析,更加清晰地认识机器学习的来龙去脉。

2.1 机器学习的实现

机器学习的实现可以分成两步:训练和预测,类似于归纳和演绎:

  • 归纳: 从具体案例中抽象一般规律,机器学习中的“训练”亦是如此。从一定数量的样本(已知模型输入 X X X和模型输出 Y Y Y)中,学习输出 Y Y Y与输入 X X X的关系(可以想象成是某种表达式)。
  • 演绎: 从一般规律推导出具体案例的结果,机器学习中的“预测”亦是如此。基于训练得到的 Y Y Y X X X之间的关系,如出现新的输入 X X X,计算出输出 Y Y Y。通常情况下,如果通过模型计算的输出和真实场景的输出一致,则说明模型是有效的。

2.2 机器学习的方法论

机器学习的方法论和人类科研的过程有着异曲同工之妙,下面以“机器从牛顿第二定律实验中学习知识”为例,更加深入理解机器学习(监督学习)的方法论本质,即在“机器思考”的过程中确定模型的三个关键要素:假设、评价、优化。

2.2.1 案例:机器从牛顿第二定律实验中学习知识


牛顿第二定律

牛顿第二定律是艾萨克·牛顿在1687年于《自然哲学的数学原理》一书中提出的,其常见表述:物体加速度的大小跟作用力成正比,跟物体的质量成反比,与物体质量的倒数成正比。牛顿第二运动定律和第一、第三定律共同组成了牛顿运动定律,阐述了经典力学中基本的运动规律。


在中学课本中,牛顿第二定律有两种实验设计方法:倾斜滑动法水平拉线法,如 图2 所示。


图2:牛顿第二定律实验设计方法

相信很多同学都有摆弄滑轮和小木块做物理实验的青涩年代和美好回忆。通过多次实验数据,可以统计出如 表1 所示的不同作用力下的木块加速度。


表1:实验获取的大量数据样本和观测结果

观察实验数据不难猜测,物体的加速度 a a a和作用力 F F F之间的关系应该是线性关系。因此我们提出假设 a = w ⋅ F a = w \cdot F a=wF,其中, a a a代表加速度, F F F代表作用力, w w w是待确定的参数。

通过大量实验数据的训练,确定参数 w w w是物体质量的倒数 ( 1 / m ) (1/m) (1/m),即得到完整的模型公式 a = F ⋅ ( 1 / m ) a = F \cdot (1/m) a=F(1/m)。当已知作用到某个物体的力时,基于模型可以快速预测物体的加速度。例如:燃料对火箭的推力 F F F=10,火箭的质量 m m m=2,可快速得出火箭的加速度 a a a=5。

2.2.2 如何确定模型参数?

这个有趣的案例演示了机器学习的基本过程,但其中有一个关键点的实现尚不清晰,即:如何确定模型参数 ( w = 1 / m ) (w=1/m) w=1/m

确定参数的过程与科学家提出假说的方式类似,合理的假说可以最大化的解释所有的已知观测数据。如果未来观测到不符合理论假说的新数据,科学家会尝试提出新的假说。如:天文史上,使用大圆和小圆组合的方式计算天体运行,在中世纪是可以拟合观测数据的。但随着欧洲工业革命的推动,天文观测设备逐渐强大,已有的理论已经无法解释越来越多的观测数据,这促进了使用椭圆计算天体运行的理论假说出现。因此,模型有效的基本条件是能够拟合已知的样本,这给我们提供了学习有效模型的实现方案。

图3 是以 H H H为模型的假设,它是一个关于参数 w w w和输入 x x x的函数,用 H ( w , x ) H(w, x) H(w,x) 表示。模型的优化目标是 H ( w , x ) H(w, x) H(w,x)的输出与真实输出 Y Y Y尽量一致,两者的相差程度即是模型效果的评价函数(相差越小越好)。那么,确定参数的过程就是在已知的样本上,不断减小该评价函数( H H H Y Y Y的差距)的过程。直到模型学习到一个参数 w w w,使得评价函数的值最小,衡量模型预测值和真实值差距的评价函数也被称为损失函数(损失Loss)


图3:确定模型参数示意图

假设机器通过尝试答对(最小化损失)大量的习题(已知样本)来学习知识(模型参数 w w w),并期望用学习到的知识所代表的模型 H ( w , x ) H(w, x) H(w,x),回答不知道答案的考试题(未知样本)。最小化损失是模型的优化目标,实现损失最小化的方法称为优化算法,也称为寻解算法(找到使得损失函数最小的参数解)。参数 w w w和输入 x x x组成公式的基本结构称为假设。在牛顿第二定律的案例中,基于对数据的观测,我们提出了线性假设,即作用力和加速度是线性关系,用线性方程表示。由此可见,模型假设、评价函数(损失/优化目标)和优化算法是构成模型的三个关键要素

2.2.3 模型结构

模型假设、评价函数和优化算法是如何支撑机器学习流程的呢?如图4 所示。


图4:机器学习流程

  • 模型假设:世界上的可能关系千千万,漫无目标的试探 Y Y Y$X$之间的关系显然是十分低效的。因此假设空间先圈定了一个模型能够表达的关系可能,如蓝色圆圈所示。机器还会进一步在假设圈定的圆圈内寻找最优的$Y$ X X X关系,即确定参数 w w w
  • 评价函数:寻找最优之前,我们需要先定义什么是最优,即评价一个 Y Y Y~ X X X关系的好坏的指标。通常衡量该关系是否能很好的拟合现有观测样本,将拟合的误差最小作为优化目标。
  • 优化算法:设置了评价指标后,就可以在假设圈定的范围内,将使得评价指标最优(损失函数最小/最拟合已有观测样本)的 Y Y Y~ X X X关系找出来,这个寻找最优解的方法即为优化算法。最笨的优化算法即按照参数的可能,穷举每一个可能取值来计算损失函数,保留使得损失函数最小的参数作为最终结果。

从上述过程可以得出,机器学习的过程与牛顿第二定律的学习过程基本一致,都分为假设、评价和优化三个阶段:

  1. 假设:通过观察加速度 a a a和作用力 F F F的观测数据,假设 a a a F F F是线性关系,即 a = w ⋅ F a = w \cdot F a=wF
  2. 评价:对已知观测数据上的拟合效果好,即 w ⋅ F w \cdot F wF计算的结果要和观测的 a a a尽量接近。
  3. 优化:在参数 w w w的所有可能取值中,发现 w = 1 / m w=1/m w=1/m可使得评价最好(最拟合观测样本)。

机器执行学习任务的框架体现了其学习的本质是“参数估计”(Learning is parameter estimation)。

上述方法论使用更规范化的表示如图5所示,未知目标函数 f f f,以训练样本 D {D} D= ( x 1 , y 1 ), … ,( x n , y n ) ({x_1},{y_1}),… ,({x_n},{y_n}) x1y1),,(xnyn为依据。从假设集合 H H H中,通过学习算法 A A A找到一个函数 g g g。如果 g g g能够最大程度的拟合训练样本 D D D,那么可以认为函数 g g g就接近于目标函数 f f f



图5:规范化表示

在此基础上,许多看起来完全不一样的问题都可以使用同样的框架进行学习,如科学定律、图像识别、机器翻译和自动问答等,它们的学习目标都是拟合一个“大公式f”,如 图6 所示。


图6:机器学习就是拟合一个“大公式”

3. 深度学习

机器学习算法理论在上个世纪90年代发展成熟,在许多领域都取得了成功,但平静的日子只延续到2010年左右。随着大数据的涌现和计算机算力提升,深度学习模型异军突起,极大改变了机器学习的应用格局。今天,多数机器学习任务都可以使用深度学习模型解决,尤其在语音、计算机视觉和自然语言处理等领域,深度学习模型的效果比传统机器学习算法有显著提升。

相比传统的机器学习算法,深度学习做出了哪些改进呢?其实两者在理论结构上是一致的,即:模型假设、评价函数和优化算法,其根本差别在于假设的复杂度。如 图6 第二个示例(图像识别)所示,对于美女照片,人脑可以接收到五颜六色的光学信号,能快速反应出这张图片是一位美女,而且是程序员喜欢的类型。但对计算机而言,只能接收到一个数字矩阵,对于美女这种高级的语义概念,从像素到高级语义概念中间要经历的信息变换的复杂性是难以想象的,如图7所示。


图7:深度学习的模型复杂度难以想象

这种变换已经无法用数学公式表达,因此研究者们借鉴了人脑神经元的结构,设计出神经网络的模型,如图8所示。图8(a)展示了神经网络基本单元-感知机的设计方案,其处理信息的方式与人脑中的单一神经元有很强的相似性;图8(b)展示了几种经典的神经网络结构(后续的章节中会详细阐述),类似于人脑中多种基于大量神经元连接而形成的不同职能的器官。


图8:模拟人脑结构,针对各种任务设计不同的深度学习模型

3.1 神经网络的基本概念

人工神经网络包括多个神经网络层,如:卷积层、全连接层、LSTM等,每一层又包括很多神经元,超过三层的非线性神经网络都可以被称为深度神经网络。通俗的讲,深度学习的模型可以视为是输入到输出的映射函数,如图像到高级语义(美女)的映射,足够深的神经网络理论上可以拟合任何复杂的函数。因此神经网络非常适合学习样本数据的内在规律和表示层次,对文字、图像和语音任务有很好的适用性。这几个领域的任务是人工智能的基础模块,因此深度学习被称为实现人工智能的基础也就不足为奇了。

神经网络基本结构如 图9 所示。


图9:神经网络基本结构示意图

  • 神经元: 神经网络中每个节点称为神经元,由两部分组成:
    • 加权和:将所有输入加权求和。
    • 非线性变换(激活函数):加权和的结果经过一个非线性函数变换,让神经元计算具备非线性的能力。
  • 多层连接: 大量这样的节点按照不同的层次排布,形成多层的结构连接起来,即称为神经网络。
  • 前向计算: 从输入计算输出的过程,顺序从网络前至后。
  • 计算图: 以图形化的方式展现神经网络的计算逻辑又称为计算图,也可以将神经网络的计算图以公式的方式表达:
    Y = f 3 ( f 2 ( f 1 ( w 1 ⋅ x 1 + w 2 ⋅ x 2 + w 3 ⋅ x 3 + b ) + … ) … ) … ) Y =f_3 ( f_2 ( f_1 ( w_1\cdot x_1+w_2\cdot x_2+w_3\cdot x_3+b ) + … ) … ) … ) Y=f3(f2(f1(w1x1+w2x2+w3x3+b)+)))

由此可见,神经网络并没有那么神秘,它的本质是一个含有很多参数的“大公式”。如果大家感觉这些概念仍过于抽象,理解的不够透彻,先不用着急,下一章会以“房价预测”为例,演示使用Python实现神经网络模型的细节。

3.2 深度学习的发展历程

神经网络思想的提出已经是70多年前的事情了,现今的神经网络和深度学习的设计理论是一步步趋于完善的。在这漫长的发展岁月中,一些取得关键突破的闪光时刻,值得深度学习爱好者们铭记,如 图10 所示。


图10:深度学习发展历程

  • 1940年代:首次提出神经元的结构,但权重是不可学的。
  • 50-60年代:提出权重学习理论,神经元结构趋于完善,开启了神经网络的第一个黄金时代。
  • 1969年:提出异或问题(人们惊讶的发现神经网络模型连简单的异或问题也无法解决,对其的期望从云端跌落到谷底),神经网络模型进入了被束之高阁的黑暗时代。
  • 1986年:新提出的多层神经网络解决了异或问题,但随着90年代后理论更完备并且实践效果更好的SVM等机器学习模型的兴起,神经网络并未得到重视。
  • 2010年左右:深度学习进入真正兴起时期。随着神经网络模型改进的技术在语音和计算机视觉任务上大放异彩,也逐渐被证明在更多的任务,如自然语言处理以及海量数据的任务上更加有效。至此,神经网络模型重新焕发生机,并有了一个更加响亮的名字:深度学习。

为何神经网络到2010年后才焕发生机呢?这与深度学习成功所依赖的先决条件:大数据涌现、硬件发展和算法优化有关。

  • 大数据是神经网络发展的有效前提。神经网络和深度学习是非常强大的模型,需要足够量级的训练数据。时至今日,之所以很多传统机器学习算法和人工特征依然是足够有效的方案,原因在于很多场景下没有足够的标记数据来支撑深度学习。深度学习的能力特别像科学家阿基米德的豪言壮语:“给我一根足够长的杠杆,我能撬动地球!”。深度学习也可以发出类似的豪言:“给我足够多的数据,我能够学习任何复杂的关系”。但在现实中,足够长的杠杆与足够多的数据一样,往往只能是一种美好的愿景。直到近些年,各行业IT化程度提高,累积的数据量爆发式地增长,才使得应用深度学习模型成为可能。

  • 依靠硬件的发展和算法的优化。现阶段,依靠更强大的计算机、GPU、autoencoder预训练和并行计算等技术,深度学习在模型训练上的困难已经被逐渐克服。其中,数据量和硬件是更主要的原因。没有前两者,科学家们想优化算法都无从进行。

3.4 深度学习改变了AI应用的研发模式

3.4.1 实现了端到端的学习

深度学习改变了很多领域算法的实现模式。在深度学习兴起之前,很多领域建模的思路是投入大量精力做特征工程,将专家对某个领域的“人工理解”沉淀成特征表达,然后使用简单模型完成任务(如分类或回归)。而在数据充足的情况下,深度学习模型可以实现端到端的学习,即不需要专门做特征工程,将原始的特征输入模型中,模型可同时完成特征提取和分类任务,如 图14 所示。


图14:深度学习实现了端到端的学习

以计算机视觉任务为例,特征工程是诸多图像科学家基于人类对视觉理论的理解,设计出来的一系列提取特征的计算步骤,典型如SIFT特征。在2010年之前的计算机视觉领域,人们普遍使用SIFT一类特征+SVM一类的简单浅层模型完成建模任务。


说明:

SIFT特征由David Lowe在1999年提出,在2004年加以完善。SIFT特征是基于物体上的一些局部外观的兴趣点而与影像的大小和旋转无关。对于光线、噪声、微视角改变的容忍度也相当高。基于这些特性,它们是高度显著而且相对容易撷取,在母数庞大的特征数据库中,很容易辨识物体而且鲜有误认。使用SIFT特征描述对于部分物体遮蔽的侦测率也相当高,甚至只需要3个以上的SIFT物体特征就足以计算出位置与方位。在现今的电脑硬件速度下和小型的特征数据库条件下,辨识速度可接近即时运算。SIFT特征的信息量大,适合在海量数据库中快速准确匹配。


3.4.2 实现了深度学习框架标准化

除了应用广泛的特点外,深度学习还推动人工智能进入工业大生产阶段,算法的通用性导致标准化、自动化和模块化的框架产生,如 图15 所示。


图15:深度学习模型具有通用性特点

在此之前,不同流派的机器学习算法理论和实现均不同,导致每个算法均要独立实现,如随机森林和支撑向量机(SVM)。但在深度学习框架下,不同模型的算法结构有较大的通用性,如常用于计算机视觉的卷积神经网络模型(CNN)和常用于自然语言处理的长期短期记忆模型(LSTM),都可以分为组网模块、梯度下降的优化模块和预测模块等。这使得抽象出统一的框架成为了可能,并大大降低了编写建模代码的成本。一些相对通用的模块,如网络基础算子的实现、各种优化算法等都可以由框架实现。建模者只需要关注数据处理,配置组网的方式,以及用少量代码串起训练和预测的流程即可。

在深度学习框架出现之前,机器学习工程师处于“手工作坊”生产的时代。为了完成建模,工程师需要储备大量数学知识,并为特征工程工作积累大量行业知识。每个模型是极其个性化的,建模者如同手工业者一样,将自己的积累形成模型的“个性化签名”。而今,“深度学习工程师”进入了工业化大生产时代,只要掌握深度学习必要但少量的理论知识,掌握Python编程,即可在深度学习框架上实现非常有效的模型,甚至与该领域最领先的模型不相上下。建模领域的技术壁垒面临着颠覆,也是新入行者的机遇。


图16:深度学习框架大大减低了AI建模难度

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/367061.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

2022-2-23作业

一、通过操作Cortex-A7核,串口输入相应的命令,控制LED灯进行工作 1.例如在串口输入led1on,开饭led1灯点亮 2.例如在串口输入led1off,开饭led1灯熄灭 3.例如在串口输入led2on,开饭led2灯点亮 4.例如在串口输入led2off,开饭led2灯熄灭 5.例如在串口输…

关于性能测试,你不可不知的内容

目录 1、性能测试概述 2、常见的性能测试指标 2.1、并发 2.2、响应时间 2.3、事务 2.3.1、事务响应时间 2.3.2、每秒事务通过数(TPS) 2.4、点击率 2.5、吞吐量 2.6、资源利用率 3、性能测试分类 3.1、一般性能测试 3.2、负载测试 3.3、压力…

虹科Dimetix激光测距仪在锯切系统中的应用

HK-Dimetix激光测距仪——锯切系统应用 许多生产设施,例如金属服务中心,使用切割锯将每个客户的订单切割成一定长度。定长切割过程通常涉及卷尺和慢跑锯的传送带。但更简单的替代方法是使用虹科Dimetix非接触式激光距离传感器。 为了切断大长度的棒材&…

Day898.Join语句执行流程 -MySQL实战

Join语句执行流程 Hi,我是阿昌,今天学习记录的是关于Join语句执行流程的内容。 在实际生产中,关于 join 语句使用的问题,一般会集中在以下两类: 不让使用 join,使用 join 有什么问题呢?如果有…

1+1>2 ?多数据源关联分析系列…

数据表连接的 join 操作,相信大家都不陌生吧?在数据分析时,经常需要对多个不同的数据源进行关联操作,因此各类数据库的 SQL 语言都包含了丰富的 join 语句,以支持批计算关联。而在金融的业务场景中,流数据实…

系统崩溃如何恢复数据?4步,教您快速抢救丢失的数据

电脑保存着很多个人文件和数据,如果碰到电脑系统崩溃,可能会导致文件无法访问,甚至我们的数据会发生丢失的情况。系统崩溃如何恢复数据?我们先来了解下Windows操作系统发生崩溃的常见原因:一次性打开太多软件&#xff…

AG9300方案替代|替代AG9300设计Type-C转VGA方案|CS5260设计原理图

AG9300方案替代|替代AG9300设计Type-C转VGA方案|CS5260设计原理图 安格 AG9300是一款实现USB TYPE-C到VGA数据的单片机解决方案转换器。ALGOLTEK AG9300支持USB Type-C显示端口交替模式,AG9300可以将视频和音频流从USB Type-C接口传输到VGA端口。在AG9300&#xff0…

LeetCode 707. 设计链表

LeetCode 707. 设计链表 难度:middle\color{orange}{middle}middle 题目描述 设计链表的实现。您可以选择使用单链表或双链表。单链表中的节点应该具有两个属性:valvalval 和 nextnextnext。valvalval 是当前节点的值,nextnextnext 是指向下…

FastCGI sent in stderr: "PHP message: PHP Fatal error

服务器php7.2卸载安装7.4之后,打开网站一直无法访问,查看nginx错误日志发现一直报这个错误:2023/02/23 11:12:55 [error] 4735#0: *21 FastCGI sent in stderr: "PHP message: PHP Fatal error: Uncaught ReflectionException: Class translator does not exist in …

OpenGL超级宝典学习笔记:原子计数器

前言 本篇在讲什么 本篇为蓝宝书学习笔记 原子计数器 本篇适合什么 适合初学Open的小白 本篇需要什么 对C语法有简单认知 对OpenGL有简单认知 最好是有OpenGL超级宝典蓝宝书 依赖Visual Studio编辑器 本篇的特色 具有全流程的图文教学 重实践,轻理论&#…

比特数据结构与算法(第四章_中)堆的分步构建

不清楚堆的概念和性质公式可以先到上一篇看看链接:比特数据结构与算法(第四章_上)树和二叉树和堆的概念及结构_GR C的博客-CSDN博客堆的逻辑结构是完全二叉树,物理(存储)结构是数组1.完整Heap.h和以前学的数…

计算机网络概述 第一部分

前言 为了准备期末考试,同时也是为了之后复习方便,特对计算机网络的知识进行了整理。本篇内容大部分是来源于我们老师上课的ppt。而我根据自己的理解,将老师的PPT整理成博文的形式以便大家复习查阅,同时对于一些不是很清楚的地方…

centos7搭建svn配置

基本概述 Apache Subversion(简称SVN,svn),一个开放源代码的版本控制系统,相较于RCS、CVS,它采用了分支管理系统,它的设计目标就是取代CVS。互联网上很多版本控制服务已从CVS转移到Subversion。…

【Vue3源码】第五章 ref的原理 实现ref

【Vue3源码】第五章 ref的原理 实现ref 上一章节我们实现了reactive 和 readonly 嵌套对象转换功能,以及shallowReadonly 和isProxy几个简单的API。 这一章我们开始实现 ref 及其它配套的isRef、unRef 和 proxyRefs 1、实现ref 接受一个内部值,返回一…

3款实用又强的软件,值得收藏,不妨试试

1、白描 白描是一款高效准确的OCR文字识别、翻译与文件扫描软件,文字识别、表格识别转Excel、识别后翻译、文件扫描等功能,都非常方便,免费使用无任何广告。白描可以自动识别文档边界,生成清晰的扫描件,高效批量处理文…

Java8 Stream流Collectors.toMap当key重复时报异常(IllegalStateException)

一、问题 在使用Collectors.toMap(Function<? super T, ? extends K> keyMapper, Function<? super T, ? extends U> valueMapper)&#xff08;两个参数的&#xff09;时&#xff0c;如果 key 有重复&#xff0c;则会报异常&#xff08;IllegalStateException…

工赋开发者社区 | (案例)中译语通:差别化纺纱柔性智慧工厂

中译语通&#xff1a;差别化纺纱柔性智慧工厂01应用成效中译语通科技股份有限公司是一家大数据和人工智能高科技公司。在机器翻译、跨语言大数据、产业链科技、科研数据分析、数字城市和工业互联网等领域拥有自主研发的先进系统平台&#xff0c;能够为全球企业级用户提供全方位…

[oeasy]python0091_仙童公司_八叛逆_intel_8080_altair8800_牛郎星

编码进化 个人电脑 计算机 通过电话网络 进行连接 极客 利用技术 做一些有趣的尝试 极客文化 是 认真研究技术的 文化 计算机 不再是 高校和研究机构高墙里面的 神秘事物而是 生活中常见的 家用电器 ibm 蓝色巨人脚步沉重 dec 小型机不断蚕食低端市场甚至组成网络干掉大型机…

【仔细理解】计算机视觉基础1——特征提取之Harris角点

Harris角点是图像特征提取中最基本的方法&#xff0c;本篇内容将详细分析Harris角点的定义、计算方法、特点。 一、Harris角点定义 在图像中&#xff0c;若以正方形的小像素窗口为基本单位&#xff0c;按照上图可以将它们划分三种类型如下&#xff1a; 平坦区域&#xff1a;在任…

【C++】Visual Studio C++使用配置Json库文件(老爷式教学)

在visual studio中使用C调用Json的三方库有很多种办法&#xff0c;这里简述一种比较方便的方法。绝对好用&#xff0c;不好用你砍我。 文章目录在visual studio中使用C调用Json的三方库有很多种办法&#xff0c;这里简述一种比较方便的方法。绝对好用&#xff0c;不好用你砍我。…