本篇在讲什么 本篇为蓝宝书学习笔记 着色器存储区块 原子内存操作 内存屏障 本篇适合什么 适合初学Open的小白 本篇需要什么 对 C++语法有简单认知 对 OpenGL有简单认知 最好是有 OpenGL超级宝典蓝宝书 依赖 Visual Studio编辑器 本篇的特色 具有全流程的图文教学 重实践,轻理论,快速上手 提供全流程的源码内容 |
![]() ★提高阅读体验★ 👉 ♠ 一级标题 👈👉 ♥ 二级标题 👈👉 ♣ 三级标题 👈👉 ♦ 四级标题 👈 |
目录
- ♠ 着色器存储区块
- ♥ 声明
- ♥ 应用
- ♥ 原子内存操作
- ♥ 内存屏障
- ♣ 什么是内存屏障
- ♣ 在应用中使用屏障
- ♣ 在着色器中使用屏障
- ♠ 推送
- ♠ 结语
♠ 着色器存储区块
我们在上一张已经简单的认识到了uniform
统一变量和一致区块
,这一章节我们学习一个新的着色器存储区块(shader storage block)
,它和uniform很像
- 一致性
1. 着色器存储区块和uniform都可以像着色器提供数据
2. 二者声明类似,着色器区块使用限定符buffer
而非uniform
- 优点
1. 存储区块更大,几乎没有上限
2. 区别uniform,着色器存储区块可以被着色器修改
3. 存储区块还支持原子内存操作
- 缺点
1. 由于非常灵活,OpenGL难以真正优化对存储块的访问
♥ 声明
用buffer
限定符声明,支持std140
和std430
打包限定符
layout (binding=0,std430) buffer color_block{
vec4 out_color;
};
♥ 应用
绑定到缓存和使用的方式和uniform
几乎一样,区别是索引使用的是GL_SHADER_STORAGE_BUFFER
我们来看一个完整的演示示例吧,很简单,我们通过区块内的变量给三角形上色
注:该例子直接修改OpenGl超级宝典官方示例singletri.cpp
,只需修改startup
方法即可
virtual void startup()
{
static const char * vs_source[] =
{
"#version 450 core \n"
" \n"
" \n"
"void main(void) \n"
"{ \n"
" const vec4 vertices[] = vec4[](vec4( 0.25, -0.25, 0.5, 1.0), \n"
" vec4(-0.25, -0.25, 0.5, 1.0), \n"
" vec4( 0.25, 0.25, 0.5, 1.0)); \n"
" \n"
" gl_Position = vertices[gl_VertexID]; \n"
"} \n"
};
static const char * fs_source[] =
{
"#version 450 core \n"
" \n"
"layout (binding=0,std430) buffer color_block \n"
"{ \n"
" vec4 out_color; \n"
"}; \n"
" \n"
"out vec4 color; \n"
" \n"
"void main(void) \n"
"{ \n"
" color = out_color; \n"
"} \n"
};
program = glCreateProgram();
GLuint fs = glCreateShader(GL_FRAGMENT_SHADER);
glShaderSource(fs, 1, fs_source, NULL);
glCompileShader(fs);
GLuint vs = glCreateShader(GL_VERTEX_SHADER);
glShaderSource(vs, 1, vs_source, NULL);
glCompileShader(vs);
glAttachShader(program, vs);
glAttachShader(program, fs);
glLinkProgram(program);
glGenVertexArrays(1, &vao);
glBindVertexArray(vao);
GLfloat sColor[] = { 1.0f, 0.5f, 0.0f, 1.0f };
GLuint ssbo;
glGenBuffers(1, &ssbo);
glBindBuffer(GL_SHADER_STORAGE_BUFFER, ssbo);
glBufferData(GL_SHADER_STORAGE_BUFFER, 4*8, NULL, GL_DYNAMIC_COPY);
glBindBufferRange(GL_SHADER_STORAGE_BUFFER, 0, ssbo, 0, 4 * 8);
glBufferSubData(GL_SHADER_STORAGE_BUFFER, 0, 4 * 4, sColor);
}
要点1:
在该片段着色器中我们声明了一个着色器存储区块color_block
,其存有唯一变量out_color
,该变量会作为三角形颜色被赋值,注意了这里限定符是buffer
,绑定缓存的索引是GL_SHADER_STORAGE_BUFFER
要点2:
自定义颜色sColor
,作为数值通过glBufferSubData
接口更新到了区块内,以下是最终显示效果
♥ 原子内存操作
区别去unifom的只读特性,着色器区块允许对内存进行简单的读写,这其中包括的原子操作
,
- 什么是原子操作
是一段从内存读取的序列,可能会伴随内存的写入
- 原子操作的作用
保证了单次数据读写的安全性
原子操作可在其他调用有机会从内存读取数据之前,就完成读取-修改-写入循环以完成一次调用
♥ 内存屏障
只读数据没有任何问题,如果伴随写入数据,可能存在风险,风险大致分为以下三种
- 先写后读(RAW)风险
刚写入内存后,立即读取该位置的数据,根据系统架构,读写顺序可能会被重排,进而读写到错误数据
- 写后写(WAW)风险
在同一内存地址连续写入数据,根据系统架构,最后一次写入并不一定是最终写入内存的值
- 先读后写(WAR)风险
通常发生在并行系统中,读取和写入的顺序可能被重排,读取到后被写入的数据
内存屏障
就是用来处理这些内存风险的工具
♣ 什么是内存屏障
相当于一个标记,告诉OpenGL,如果准备重新排序,必须完成屏障之前发送的命令,不要先执行后边的命令
♣ 在应用中使用屏障
- 函数
void glMemoryBarrier(GLbitfield barriers);
参数barriers
不同的值代表不同的含义,例如:
- GL_SHADER_STORAGE_BARRIER_BIT
屏障执行前的所有操作(尤其是写入),一定执行在屏障调用后的数据操作之前被完成
- GL_UNIFORM_BARRIER_BIT
如果我们向缓存内写入的数据,在屏障执行后作为统一变量缓存,设置该选项
- GL_VERTEX_ATTRIB_ARRAY_BARRIER_BIT
OpenGL会等待向缓存写入的着色器完成,然后通过顶点属性将这些缓存作为顶点数据源
♣ 在着色器中使用屏障
我们可以直接在着色器中使用屏障
void memoryBarrier();
已执行的读写函数会在该屏障执行完成前返回
♠ 推送
- Github
https://github.com/KingSun5
♠ 结语
若是觉得博主的文章写的不错,不妨关注一下博主,点赞一下博文,另博主能力有限,若文中有出现什么错误的地方,欢迎各位评论指摘。