SVHN数据集下载及使用方法

news2024/11/25 4:23:01

街景门牌号数据集(SVHN),这是一个现实世界数据集,用于开发目标检测算法。它需要最少的数据预处理过程。它与 MNIST 数据集有些类似,但是有着更多的标注数据(超过 600,000 张图像)。这些数据是从谷歌街景中的房屋门牌号中收集而来的。

大小:2.5GB

数量:6,30,420 张图像,共 10 类

The Street View House Numbers (SVHN) Dataset:下载地址

1、数据集概述

  • 10 个类别,每个数字 1 个。数字“1”的标签为 1,“9”的标签为 9,“0”的标签为 10。
  • 73257 个数字用于训练,26032 个数字用于测试,以及 531131 个额外的、难度稍低的样本,用作额外的训练数据
  • 有两种格式:
    1. 带有字符级边界框的原始图像。
    2. 以单个字符为中心的类似 MNIST 的 32×32 图像(许多图像确实在侧面包含一些干扰项)。

2、数据集两种方式

(半监督学习中采用这种方式)方式一:完整数字: train.tar.gz , test.tar.gz , extra.tar.gz 

原生的数据集1也就是官网的 Format 1 是一些原始的未经处理的彩色图片,如下图所示(不含有蓝色的边框),下载的数据集含有 PNG 的图像和 digitStruct.mat  的文件,其中包含了边框的位置信息,这个数据集每张图片上有好几个数字,适用于 OCR 相关方向。这里采用 Format2, Format2 将这些数字裁剪成32x32的大小,如图所示,并且数据是 .mat 文件。

这些是带有字符级别边界框的原始可变分辨率彩色门牌号图像,如上面的示例图像所示。(这里的蓝色边界框只是为了说明目的。边界框信息存储在digitStruct.mat中,而不是直接绘制在数据集中的图像上。)每个 tar.gz 文件包含 png 格式的原始图像,以及一个digitStruct.mat 文件,可以使用 Matlab 加载。digitStruct.mat 文件包含一个名为digitStruct的结构,其长度与原始图像的数量相同。digitStruct 中的每个元素都有以下字段:name是一个包含相应图像文件名的字符串。 bbox这是一个结构数组,包含图像中每个数字边界框的位置、大小和标签。例如:digitStruct(300).bbox(2).height给出第 300 个图像中第 2 个数字边界框的高度。 

方式二:裁剪的数字 train_32x32.mat , test_32x32.mat , extra_32x32.mat

以类似 MNIST 的格式表示的字符级基本事实。所有数字都已调整为 32 x 32 像素的固定分辨率。原始字符边界框在适当的维度上扩展成为方形窗口,因此将它们调整为 32×32 像素不会引入纵横比失真。然而,这种预处理在感兴趣数字的两侧引入了一些分散注意力的数字。加载 .mat 文件会创建 2 个变量:X是包含图像的 4 维矩阵,y是类标签的向量。要访问图像,X(:,:,:,i)给出第 i 个 32×32 RGB 图像,类标签为y(i)。

3.数据处理

数据集含有两个变量 X 代表图像, 训练集 X 的 shape 是  (32,32,3,73257) 也就是(width, height, channels, samples),  tensorflow 的张量需要 (samples, width, height, channels),所以需要转换一下,由于直接调用 cifar 10 的网络模型,数据只需要先做个归一化,所有像素除于255就 OK,另外原始数据 0 的标签是 10,这里要转化成 0,并提供 one_hot 编码。

#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Thu Jan 19 09:55:36 2017
@author: cheers
"""
 
import scipy.io as sio
import matplotlib.pyplot as plt
import numpy as np
 
image_size = 32
num_labels = 10
 
def display_data():
    print 'loading Matlab data...'
    train = sio.loadmat('train_32x32.mat')
    data=train['X']
    label=train['y']
    for i in range(10):
        plt.subplot(2,5,i+1)
        plt.title(label[i][0])
        plt.imshow(data[...,i])
        plt.axis('off')
    plt.show()
 
def load_data(one_hot = False):
    
    train = sio.loadmat('train_32x32.mat')
    test = sio.loadmat('test_32x32.mat')
    
    train_data=train['X']
    train_label=train['y']
    test_data=test['X']
    test_label=test['y']
    
    
    train_data = np.swapaxes(train_data, 0, 3)
    train_data = np.swapaxes(train_data, 2, 3)
    train_data = np.swapaxes(train_data, 1, 2)
    test_data = np.swapaxes(test_data, 0, 3)
    test_data = np.swapaxes(test_data, 2, 3)
    test_data = np.swapaxes(test_data, 1, 2)
    
    test_data = test_data / 255.
    train_data =train_data / 255.
    
    for i in range(train_label.shape[0]):
         if train_label[i][0] == 10:
             train_label[i][0] = 0
                        
    for i in range(test_label.shape[0]):
         if test_label[i][0] == 10:
             test_label[i][0] = 0
 
    if one_hot:
        train_label = (np.arange(num_labels) == train_label[:,]).astype(np.float32)
        test_label = (np.arange(num_labels) == test_label[:,]).astype(np.float32)
 
    return train_data,train_label, test_data,test_label
 
if __name__ == '__main__':
    load_data(one_hot = True)
    display_data()

3、TFearn 训练

注意 ImagePreprocessing 对数据做了 0 均值化。网络结构也比较简单,直接调用 TFlearn 的 cifar10 例子。

from __future__ import division, print_function, absolute_import
 
import tflearn
from tflearn.data_utils import shuffle, to_categorical
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.conv import conv_2d, max_pool_2d
from tflearn.layers.estimator import regression
from tflearn.data_preprocessing import ImagePreprocessing
from tflearn.data_augmentation import ImageAugmentation
 
# Data loading and preprocessing
import svhn_data as SVHN
X, Y, X_test, Y_test = SVHN.load_data(one_hot = True)
X, Y = shuffle(X, Y)
 
# Real-time data preprocessing
img_prep = ImagePreprocessing()
img_prep.add_featurewise_zero_center()
img_prep.add_featurewise_stdnorm()
 
 
# Convolutional network building
network = input_data(shape=[None, 32, 32, 3],
                     data_preprocessing=img_prep)
network = conv_2d(network, 32, 3, activation='relu')
network = max_pool_2d(network, 2)
network = conv_2d(network, 64, 3, activation='relu')
network = conv_2d(network, 64, 3, activation='relu')
network = max_pool_2d(network, 2)
network = fully_connected(network, 512, activation='relu')
network = dropout(network, 0.5)
network = fully_connected(network, 10, activation='softmax')
network = regression(network, optimizer='adam',
                     loss='categorical_crossentropy',
                     learning_rate=0.001)
 
# Train using classifier
model = tflearn.DNN(network, tensorboard_verbose=0)
model.fit(X, Y, n_epoch=15, shuffle=True, validation_set=(X_test, Y_test),
          show_metric=True, batch_size=96, run_id='svhn_cnn')

训练结果:

Training Step: 11452  | total loss: 0.68217 | time: 7.973s
| Adam | epoch: 015 | loss: 0.68217 - acc: 0.9329 -- iter: 72576/73257
Training Step: 11453  | total loss: 0.62980 | time: 7.983s
| Adam | epoch: 015 | loss: 0.62980 - acc: 0.9354 -- iter: 72672/73257
Training Step: 11454  | total loss: 0.58649 | time: 7.994s
| Adam | epoch: 015 | loss: 0.58649 - acc: 0.9356 -- iter: 72768/73257
Training Step: 11455  | total loss: 0.53254 | time: 8.005s
| Adam | epoch: 015 | loss: 0.53254 - acc: 0.9421 -- iter: 72864/73257
Training Step: 11456  | total loss: 0.49179 | time: 8.016s
| Adam | epoch: 015 | loss: 0.49179 - acc: 0.9416 -- iter: 72960/73257
Training Step: 11457  | total loss: 0.45679 | time: 8.027s
| Adam | epoch: 015 | loss: 0.45679 - acc: 0.9433 -- iter: 73056/73257
Training Step: 11458  | total loss: 0.42026 | time: 8.038s
| Adam | epoch: 015 | loss: 0.42026 - acc: 0.9469 -- iter: 73152/73257
Training Step: 11459  | total loss: 0.38929 | time: 8.049s
| Adam | epoch: 015 | loss: 0.38929 - acc: 0.9491 -- iter: 73248/73257
Training Step: 11460  | total loss: 0.35542 | time: 9.928s
| Adam | epoch: 015 | loss: 0.35542 - acc: 0.9542 | val_loss: 0.40315 - val_acc: 0.9085 -- iter: 73257/73257

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/365443.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【笑小枫-面试篇】Java基础面试题整理,努力做全网最全

写在前面 或许你只是想白嫖内容,或许你也会忽略这段文字,但我还是想弱弱的说 题目整理耗费了大量精力,希望可以给博主点赞收藏,谢谢大家啦 我呢,笑小枫,一个努力的普通人,也希望可以花1秒钟记住…

VS Code安装及(C/C++)环境配置(Windows系统)

参考资料2份: 从零开始的vscode安装及环境配置教程(C/C)(Windows系统)_光中影zone的博客-CSDN博客_vscode运行配置https://blog.csdn.net/qq_45807140/article/details/112862592 VSCode配置C/C环境 - 知乎 (zhihu.com)https://zhuanlan.zhihu.com/p/87864677 五…

C语言与Linux系统文件操作函数大全

目录 一、C语言——fopen函数 二、C语言——fwrite函数 三、C语言——fread函数 四、C语言——fseek函数 1、Linux系统——open接口 2、Linux系统——write接口 3、Linux系统——read接口 4、Linux系统——lseek接口 一、C语言——fopen函数 fopen函数是C标准库提供的打…

FreeRTOS入门(02):任务基础使用与说明

文章目录目的创建任务任务调度任务控制延时函数任务句柄获取与修改任务优先级删除任务挂起与恢复任务强制任务离开阻塞状态空闲任务总结目的 任务(Task)是FreeRTOS中供用户使用的最核心的功能,本文将介绍任务创建与使用相关的基础内容。 创…

QT入门Containers之QTabWidget

目录 一、QTabWidget界面相关 1、布局介绍 2、更改选项卡的名字 3、设置关闭图标 4、代码测试新增页面在构造函数中添加 5、添加图标 6、常用设置 此文为作者原创,创作不易,转载请标明出处! 一、QTabWidget界面相关 1、布局介绍 选项…

MySQL 数据库基础命令

MySQL 基础命令 一.了解数据库 1、了解数据库对象 1.表: 用于以有组织方式存储数据。以行和列的格式包含数据。 2.索引: 是内部表结构,MySQL 用它基于一列或多列的值来提供对表中各行的快速访问。 3.视图: 是虚拟表&#…

Netcat安装与使用(nc)

Netcat安装与使用1.Netcat简介1.1.Netcat安装1.1.1.安装整体流程1.1.1.1.安装依赖1.1.1.2.安装Netcat1.1.1.3.配置环境变量1.1.1.4.测试1.2.Netcat基本功能1.3.Netcat常用参数2.Netcat用法2.1.前期准备2.2.banner相关信息抓取2.3.端口扫描2.3.1.扫描指定端口2.3.2.扫描指定端口…

springboot启动图案的修改方法

目录 一、springboot项目启动原图 二、如何修改为你心意的图片 1、首先在resource下创建banner.txt这是默认的名字 2、在banner.txt文件中加入你自己的配置 3、生成的图案 4、推荐几个生成的网址 5、修改字符颜色 6、控制Banner的是否开启、输出位置 第一种: …

yarn的global安装命令不生效

问题 yarn全局安装某个依赖完成之后,但依赖没有生效,一般有两种情况导致的。 解决思路 1.yarn命令问题 yarn在全局安装某个依赖时,global要紧接在yarn之后,然后才是add yarn global add xxxx如果出现global在add之后&#xff…

JAVASE半天速通集锦(only 40点,查找and复习必看)

JAVASE 以下内容根据【尚硅谷】7天搞定Java基础,Java零基础极速入门 视频简单总结而成 所谓变量就是可以改变的向量存储;标识符即标识数据的符号——变量名:只有下划线和$,预定义关键字或保留字不给用 基本数据类型 byte 8,sho…

诚邀您体验人工智能AI

近期,人工智能(AI)领域动作频频,OPENAI公司Chat GPT的出现,标志着人工智能的研究与应用已经进入了一个崭新的发展阶段,国内腾讯、阿里巴巴、百度、易网、国外微软、谷歌、苹果、IBM、Amazon,等互…

数据结构---顺序表

专栏:数据结构 个人主页:HaiFan. 专栏简介:从零开始,数据结构!! 顺序表前言接口实现SListInit初始化和SListDestory销毁SListPrint打印表中的元素SListCheckCapacity检查表中空间SListPushBack尾插和SListP…

【项目设计】高并发内存池(一)[项目介绍|内存池介绍|定长内存池的实现]

🎇C学习历程:入门 博客主页:一起去看日落吗持续分享博主的C学习历程博主的能力有限,出现错误希望大家不吝赐教分享给大家一句我很喜欢的话: 也许你现在做的事情,暂时看不到成果,但不要忘记&…

IPVlan 详解

文章目录简介Ipvlan2同节点 Ns 互通Ns 内与宿主机 通信第三种方法Ns 到节点外部结论Ipvlan31. 同节点 Ns 互通Ns 内与宿主机 通信Ns 内到外部网络总结源码分析ipvlan 收包流程收包流程主要探讨使用 ipvlan 为 cni 通过虚拟网卡的实现。简介 ipvlan 和 macvlan 类似&#xff0c…

深度学习入门(六十七)循环神经网络——注意力机制

深度学习入门(六十七)循环神经网络——注意力机制前言循环神经网络——注意力机制课件心理学注意力机制注意力机制是显式地考虑随意线索非参注意力池化层Nadaraya-Watson 核回归:总结教材(注意力提示)1 生物学中的注意…

数据库系统:2. 关系数据库

更好的阅读体验\huge{\color{red}{更好的阅读体验}}更好的阅读体验 文章目录2.1 关系数据结构及形式化定义2.1.1 关系域笛卡尔积关系码三类关系基本关系的性质2.1.2 关系模式2.1.3 关系数据库2.1.4 关系模型的存储结构2.2 关系操作2.2.1 基本的关系操作2.2.2 关系数据语言的分类…

[visual studio]中,关于如何 【调试】 的问题 及 技巧

我们都知道,不会调试的程序员不是一个合格的程序员。 在初学阶段,由于对于语法的不熟悉,我们可能会写出很多语法错误,无法通过编译,编译器会报错,这种错误很好修改。 但是,随着我们不断敲代码…

当面试官问“你的SQL能力怎么样”时,怎么回答才不会掉进应聘陷阱?

在某平台看到一个比较实际的问题,在这里分享给职场新人。 SQL已经是职场最常用的一种编程语言,所以应聘技术或非技术岗位,都可能会被问道一个问题:你的SQL能力怎么样? 对于职场新人来说(SQL高手可以无视下…

JavaScript事件循环

大厂面试题分享 面试题库后端面试题库 (面试必备) 推荐:★★★★★地址:前端面试题库一、异步执行原理1. 单线程的JavaScript我们知道,JavaScript是一种单线程语言,它主要用来与用户互动,以及操…

50-Jenkins-Lockable Resources插件实现资源锁定

Lockable Resources插件实现资源锁定前言安装插件使用插件资源配置Pipeline中使用前言 用来阻止多个构建在同一时间试图使用同一个资源。这里的资源可能是一个节点、一个代理节点、一组节点或代理节点的集合,或者仅仅是一个用于上锁的名字。如果指定的资源没有在全…