✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab仿真内容点击👇
智能优化算法 神经网络预测 雷达通信 无线传感器
信号处理 图像处理 路径规划 元胞自动机 无人机 电力系统
⛄ 内容介绍
一种新颖的元启发式算法,白鹭群优化算法 (ESOA),其灵感来自两种白鹭物种(大白鹭和雪白鹭)的狩猎行为。ESOA 由三个主要部分组成:Sit-And-Wait 策略、进取策略以及判别条件。
⛄ 部分代码
clear all
clc
close all
SearchAgents_no=30; % Number of search agents
Function_name='F3'; % Name of the test function that can be from F1 to F23 (Table 1,2,3 in the paper)
Max_iteration=100; % Maximum numbef of iterations
% Load details of the selected benchmark function
[lb,ub,dim,fobj]=Get_Functions_details(Function_name);
lb = ones(SearchAgents_no, dim) .* lb;
ub = ones(SearchAgents_no, dim) .* ub;
[Best_score,Best_pos,ESOA_cg_curve]=ESOA(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);
figure('Position',[500 500 660 290])
%Draw search space
subplot(1,2,1);
func_plot(Function_name);
title('Parameter space')
xlabel('x_1');
ylabel('x_2');
zlabel([Function_name,'( x_1 , x_2 )'])
%Draw objective space
subplot(1,2,2);
semilogy(ESOA_cg_curve,'Color','r','linewidth',2)
title('Objective space')
xlabel('Iteration');
ylabel('Best score obtained so far');
axis tight
grid on
box on
legend('ESOA')
display(['The best solution obtained by ESOA is : ', num2str(Best_pos)]);
display(['The best optimal value of the objective funciton found by ESOA is : ', num2str(Best_score)]);
⛄ 运行结果
⛄ 参考文献
❤️ 关注我领取海量matlab电子书和数学建模资料
❤️部分理论引用网络文献,若有侵权联系博主删除