目录
- 一、CAS与原子类
- 1.1 CAS
- 1.2 乐观锁与悲观锁
- 1.3 原子操作类
- 二、 synchronized优化
- 2.1 轻量级锁
- 2.2 轻量级锁-无竞争
- 2.3 轻量级锁-锁膨胀
- 2.4 重量级锁-自旋
- 2.5 偏向锁
- 2.6 synchronized-其他优化
一、CAS与原子类
1.1 CAS
CAS(一种不断尝试)即Compare and Swap,它体现的一种乐观锁的思想,比如多个线程要对一个共享的整形变量执行+1操作:
CompareAndSwap:尝试把结果赋值给前面的共享变量,赋值的同时将旧值与共享变量当前的值作比较【怕写入结果时有其他线程已经将共享变量的值修改】
获取共享变量时,为了保证该变量的可见性,需要使用volatile修饰。结合CAS和volatile可以实现无锁并发,使用于竞争不激烈、多核CPU的场景下。
● 因为没有使用synchronized,所以线程不会陷入阻塞(CAS需要不断重试进而利用CPU时间),这是效率提升的因素之一
● 但如果因为竞争激烈,可以想到重连必然频繁发生,反而效率会受影响
CAS底层依赖于一个Unsafe类来直接调用操作系统底层的CAS指令,下面是直接使用Unsafe对象进行线程安全保护的例子
1.2 乐观锁与悲观锁
● CAS是基于乐观锁的思想:最乐观的估计,不怕别的线程来修改共享变量,就算修改了也没关系,花费点时间再重试而已
● synchronized是基于悲观锁的思想:最悲观的估计,时刻得防着其他线程来修改共享变量,只要线程上了锁就别想修改,完全解开了锁其他线程才有机会
1.3 原子操作类
juc(java.util.concurrent)Java并发工具包中提供了原子操作类,可以提供线程安全的操作,例如:AtomicInteger(原子整数类===>保护整数操作自增、自减的一些线程安全操作)、AtomicBoolean等,它们底层就是采用CAS技术+volatile来实现的。
import java.util.concurrent.atomic.AtomicInteger;
public class Test {
// 创建原子整数对象(给一个初始值0)
private static AtomicInteger i=new AtomicInteger(0);
public static void main(String[] args) throws InterruptedException {
Thread t1=new Thread(()->{
for (int j = 0; j < 5000 ; j++) {
i.getAndIncrement(); // 获取并且自增 i++
// i.incrementAndGet(); // 自增并且获取 ++i
}
});
Thread t2 = new Thread(()-> {
for (int j = 0; j < 5000; j++) {
i.getAndDecrement(); // 获取并且自减 i--
}
});
t1.start();
t2.start();
// 让主线程等待,一直等待其他线程不再活动为止 //
t1.join();
t2.join();
System.out.println(i);
}
}
结果并不会出现整数、负数的情况(利用无锁并发的方式来保证原子整数类中整数信息的线程安全)
二、 synchronized优化
Java HotSPot虚拟机中,每个对象都有对象头(包括class指针和Mark Word)。Mark Word平时储存这个对象的哈希值、分代年龄,当加锁时,这些信息就根据情况被替换为标记位、线程锁记录指针、重量级锁指针、线程ID等内容
2.1 轻量级锁
如果一个对象虽然有多线程访问,但多线程访问的时间是错开的(也就是没有竞争),那么可以使用轻量级锁来优化。这就好比:
学生(线程A)用课本占座(轻量级锁好比用课本占座,座位好比CPU的使用权),上了半节课,出门了(CPU时间到),回来一看, 发现课本没变,说明没有竞争,继续上他的课。
如果这期间有其它学生(线程B) 来了,会告知(线程A)有并发访问,线程A随即升级为重量级锁,进入重量级锁的流程。【锁膨胀:轻量级锁升级为重量级锁】
而重量级锁就不是用课本占座那么简单了,可以想象线程A走之前,把座位用一个铁栅栏围起来
假设有两个方法同步块,利用同一个对象加锁
static Object obj=new Object();
public static void method1(){
synchronized (obj){
// 同步块 A
method2();
}
}
private static void method2() {
synchronized (obj){
// 同步块B
}
}
2.2 轻量级锁-无竞争
每个线程的栈帧中都会包含一个锁记录的结构,内部可以存储锁定对象的Mark Word(8个字节)
栈帧中锁记录的结构的作用:对一个对象加锁后,需将原来旧的信息暂存到栈帧的锁记录结构中,将来解锁时,再将暂存的Mark Word旧的信息恢复回去
对以上代码的加锁、解锁流程:
2.3 轻量级锁-锁膨胀
如果在尝试加轻量级锁的过程中,CAS操作无法成功,这是一种情况就是有其他线程为此对象加上了轻量级锁(有竞争),这时需要进行锁膨胀,将轻量级锁升级为重量级锁。
static Object obj = new Object();
public static void method1 () {
synchronized (obj) {
// 同步块
}
}
2.4 重量级锁-自旋
重量级锁竞争的时候,还可以使用自选来进行优化,如果当前线程自旋成功(即这个时候持锁线程已经退出了同步块,释放了锁),这时当前线程就可以避免阻塞。
在Java 6之后自旋锁是自适应的,比如对象刚刚的一次自旋操作成功过,那么认为这次自旋成功的可能性会高,就多自旋几次;反之,就少自旋甚至不自旋,总之,比较智能。
● 自旋会占用CPU时间,单核CPU自旋就是浪费(单核CPU无闲置CPU)毫无意义,多核CPU自旋才会发挥优势
● 好比等红灯时汽车是不是熄火,不熄火相当于自旋(等待时间短了划算),熄火相当于阻塞(等待时间长了不划算)
● Java 7之后不能再控制是否开启自旋功能
①: 自旋重试成功的情况【当线程2也想加锁(获取monitor)时,发现不能加锁时并不会马上陷入阻塞】
②: 自旋重试失败的情况【线程2不可能无限制的自旋重试,若线程1执行的时间较长,在重试过程中同步代码块还未执行完,重试多次后会放弃重试,然后自己陷入阻塞】
2.5 偏向锁
假设有两个方法同步块,利用同一个对象加锁
锁重入:线程1对对象加锁,由于其调用方法2,方法2还是本线程对同一对象加锁,但每次进行锁重入时还是会用CAS再做一次修改Mark Word为线程1的锁记录地址这样的操作
如何优化以上存在的问题?===>JDK 6中引入偏向锁的概念做进一步优化
轻量级锁在没有竞争时(就自己这个线程) , 每次重入仍然需要执行CAS操作。Java 6中引入了偏向锁来做进一步优化:只有第一次使用CAS将线程ID设置到对象的Mark Word头,之后发现这个线程ID是自己的就表示没有竞争,不用重新CAS.
■ 撤销偏向需要将持锁线程升级为轻量级锁,这个过程中所有线程需要暂停(STW)
■ 访问对象的hashCode也会撤销偏向锁(无锁状态下,对象头中存储的为对象的hashCode;加上偏向锁后,对象头中存的为线程ID,hashCode被放到加锁线程中)
■ 如果对象虽然被多个线程访问,但没有竞争,这时偏向了线程TI的对象仍有机会重新偏向T2, (FL)中J重置对象的Thread ID
■ 撤销偏向和重偏向都是批量进行的,以类为单位
■ 如果撤销偏向到达某个阈值,整个类的所有对象都会变为不可偏向的
■ 可以主动使用-XX:-UseBiasedL ocking禁用偏向锁
可以参考此篇论文: https://www.oracle .com technetwork/java biasedlocking -oopsla2006-wp- 149958.pdf
2.6 synchronized-其他优化
① 减少上锁时间 :同步代码块中尽量短
② 减少锁的粒度 :将一个锁拆分为多个锁提高并发度
例如:
■ ConcurrentHashMap
■ LongAdder(进行计数的原子操作类)分为base和cells 两部分。没有并发争用的时候或者是cells数组正在初始化的时候,会使用CAS来累加值到base,有并发争用,会初始化cells数组,数组有多少个cell,就允许有多少线程并行修改,最后将数组中每个cell累加,再加上base就是最终的值
■ LinkedBlockingQueue 入队和出队使用不同的锁,相对于I inkedBlockingArray只有一个锁效率要高
③ 锁粗化 :
多次循环进入同步块不如同步块内多次循环
另外JVM可能会做如下优化,把多次append的加锁操作粗化为一次(因为都是对同一个对象加锁,没必要重入多次)
// StringBuffer类是线程安全的【里面的append()方法会有synchronized来进行同步保护】
new StringBuffer().append("a").append("b").append("c");
④ 锁消除 :当对象没有机会被外界用到时,就会将对象上的锁消除掉
JVM会进行代码的逃逸分析,例如某个加锁对象是方法内局部变量,不会被其他线程访问到,这时候就会被即时编译器忽略掉所有同步操作。
⑤ 读写分离 :
CopyOnWriteArrayList:(读)读取原始数组的内容;
CopyOnWriteSet:(写)复制一份,在一个新数组上进行;
因此读操作不同同步,只需要对写操作进行同步即可
参考:
https://wiki.openjdk. java.net/display/HotSpot/Synchronization
http://luojinping.com/2015/07/09/javai)iít1c/
https://www.infoq.cn/article/java-se- 16-synchronized
https://www.jianshu.com/p/9932047a89be
https://www.cnblogs.com/sheeva/p/6366782.html
https://stackoverflow.com/questions/463 12817/does-java-ever-rebias-an-individual-lock