MySQL锁之深入死锁分析

news2024/11/15 10:06:14

文章目录

  • 1 死锁产生原因分析
    • 1.1 产生原因
    • 1.2 产生示例
      • 1.2.1 案例一
      • 1.2.2 案例二
      • 1.2.3 案例三
      • 1.2.4 案例四
      • 1.2.5 案例五
      • 1.2.6 案例六
    • 1.3 死锁预防策略
    • 1.4 剖析死锁的成因
    • 1.5 解除死锁的占用
      • 1.5.1 死锁分析
      • 1.5.2 死锁解决

1 死锁产生原因分析

点击此处了解MySQL各种锁分析

1.1 产生原因

所谓死锁DeadLock:是指两个或两个以上的进程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去,此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程。
表级锁不会产生死锁 ,所以解决死锁主要还是针对于最常用的InnoDB
死锁的关键在于:两个(或以上)的Session加锁的顺序不一致。那么对应的解决死锁问题的关键就是:让不同的session加锁有次序

1.2 产生示例

1.2.1 案例一

需求:将投资的钱拆成几份随机分配给借款人
起初业务程序思路是这样的:投资人投资后,将金额随机分为几份,然后随机从借款人表里面选几个,然后通过一条条 select for update 去更新借款人表里面的余额等

例如两个用户同时投资,A 用户金额随机分为 2 份,分给借款人 1,2B 用户金额随机分为 2 份,分给借款人 2,1。由于加锁的顺序不一样,死锁当然很快就出现了。
对于这个问题的改进很简单,直接把所有分配到的借款人直接一次锁住就行了

Select * from xxx where id in (xx,xx,xx) for update

in 里面的列表值 mysql 是会自动从小到大排序,加锁也是一条条从小到大加的锁
例如(以下会话id为主键):

Session1:
mysql> select * from t3 where id in (8,9) for update;
+----+--------+------+---------------------+
| id | course | name | ctime |
+----+--------+------+---------------------+
|  8 | WA | f | 2016-03-02 11:36:30 |
| 9 | JX | f | 2016-03-01 11:36:30 |
+----+--------+------+---------------------+
rows in set (0.04 sec)
Session2:
select * from t3 where id in (10,8,5) for update;

锁等待中 … 其实这个时候 id=10 这条记录没有被锁住的,但 id=5 的记录已经被锁住了,锁的等待在id=8的这里
不信请看:

Session3:
mysql> select * from t3 where id=5 for update;

锁等待中

Session4:
mysql> select * from t3 where id=10 for update;
+----+--------+------+---------------------+
| id | course | name | ctime |
+----+--------+------+---------------------+
| 10 | JB | g | 2016-03-10 11:45:05 |
+----+--------+------+---------------------+
row in set (0.00 sec)

在其它sessionid=5是加不了锁的,但是id=10是可以加上锁的。

1.2.2 案例二

在开发中,经常会做这类的判断需求:根据字段值查询(有索引),如果不存在,则插入;否则更新。
id为主键为例,目前还没有id=22的行

Session1:
select * from t3 where id=22 for update;
Empty set (0.00 sec)
session2:
select * from t3 where id=23  for update;
Empty set (0.00 sec)
Session1:
insert into t3 values(22,'ac','a',now());

锁等待中……

Session2:
insert into t3 values(23,'bc','b',now());
ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction

当对存在的行进行锁的时候(主键),mysql就只有行锁。当对未存在的行进行锁的时候(即使条件为主键),mysql是会锁住一段范围(有gap锁
锁住的范围为:
无穷小或小于表中锁住id的最大值,无穷大或大于表中锁住id的最小值,如:如果表中目前有已有的id为(11 , 12),那么就锁住(12,无穷大)。如果表中目前已有的id为(11 , 30),那么就锁住(11,30)

对于这种死锁的解决办法是:

insert into t3(xx,xx) on duplicate key update xx='XX';

用mysql特有的语法来解决此问题。因为insert语句对于主键来说,插入的行不管有没有存在,都会只有行锁

1.2.3 案例三

mysql> select * from t3 where id=9 for update;
+----+--------+------+---------------------+
| id | course | name | ctime |
+----+--------+------+---------------------+
| 9 | JX | f | 2016-03-01 11:36:30 |
+----+--------+------+---------------------+

row in set (0.00 sec)
Session2:
mysql> select * from t3 where id<20 for update;

锁等待中

Session1:
mysql> insert into t3 values(7,'ae','a',now());
ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction

这个跟案例一其它是差不多的情况,只是session1不按常理出牌了, Session2在等待Session1id=9的锁,session2又持了1到8的锁(注意9到19的范围并没有被session2锁住),最后,session1在插入新行时又得等待session2,故死锁发生了
这种一般是在业务需求中基本不会出现,因为锁住了id=9,却又想插入id=7的行,这就有点跳了,当然肯定也有解决的方法,那就是重理业务需求,避免这样的写法

1.2.4 案例四

在这里插入图片描述

一般的情况,两个session分别通过一个sql持有一把锁,然后互相访问对方加锁的数据产生死锁。

1.2.5 案例五

在这里插入图片描述

两个单条的sql语句涉及到的加锁数据相同,但是加锁顺序不同,导致了死锁。

1.2.6 案例六

死锁场景如下:

CREATE TABLE dltask (
    id bigint unsigned NOT NULL AUTO_INCREMENT COMMENT ‘auto id’,
    a varchar(30) NOT NULL COMMENT ‘uniq.a’,
    b varchar(30) NOT NULL COMMENT ‘uniq.b’,
    c varchar(30) NOT NULL COMMENT ‘uniq.c’,
    x varchar(30) NOT NULL COMMENTdata, 
    PRIMARY KEY (id),
    UNIQUE KEY uniq_a_b_c (a, b, c)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT=’deadlock test’;

a,b,c三列,组合成一个唯一索引,主键索引为id列。
MySQL事务隔离级别:RR (Repeatable Read)

每个事务只有一条SQL:

delete from dltask where a=? and b=? and c=?;

SQL的执行计划
在这里插入图片描述

死锁日志
在这里插入图片描述

众所周知,InnoDB上删除一条记录,并不是真正意义上的物理删除,而是将记录标识为删除状态。(注:这些标识为删除状态的记录,后续会由后台的Purge操作进行回收,物理删除。但是,删除状态的记录会在索引中存放一段时间。)
RR隔离级别下,唯一索引上满足查询条件,但是却是删除记录,如何加锁?
InnoDB在此处的处理策略与前两种策略均不相同,或者说是前两种策略的组合:对于满足条件的删除记录,InnoDB会在记录上加next key lock X(对记录本身加X锁,同时锁住记录前的GAP,防止新的满足条件的记录插入。) Unique查询,三种情况,对应三种加锁策略,总结如下:
此处,看到了next key锁,是否很眼熟?对了,前面死锁中事务1,事务2处于等待状态的锁,均为next key锁。明白了这三个加锁策略,其实构造一定的并发场景,死锁的原因已经呼之欲出。但是,还有一个前提策略需要介绍,那就是InnoDB内部采用的死锁预防策略

  • 找到满足条件的记录,并且记录有效,则对记录加X锁(排他锁),No Gap锁(lock_mode X locks rec but not gap)
  • 找到满足条件的记录,但是记录无效(标识为删除的记录),则对记录加next key锁(同时锁住记录本身,以及记录之前的Gap:lock_mode X);
  • 未找到满足条件的记录,则对第一个不满足条件的记录加Gap锁,保证没有满足条件的记录插入(locks gap before rec);

1.3 死锁预防策略

InnoDB引擎内部(或者说是所有的数据库内部),有多种锁类型:事务锁(行锁表锁),Mutex(保护内部的共享变量操作)、RWLock(又称之为Latch,保护内部的页面读取与修改)。

InnoDB每个页面为16K,读取一个页面时,需要对页面加S锁(共享锁),更新一个页面时,需要对页面加上X锁(排他锁)。任何情况下,操作一个页面,都会对页面加锁,页面锁加上之后,页面内存储的索引记录才不会被并发修改。

因此,为了修改一条记录,InnoDB内部如何处理:

  • 根据给定的查询条件,找到对应的记录所在页面;
  • 对页面加上X锁(RWLock),然后在页面内寻找满足条件的记录;
  • 在持有页面锁的情况下,对满足条件的记录加事务锁(行锁:根据记录是否满足查询条件,记录是否已经被删除,分别对应于上面提到的3种加锁策略之一);

死锁预防策略:相对于事务锁,页面锁是一个短期持有的锁,而事务锁(行锁、表锁)是长期持有的锁。因此,为了防止页面锁与事务锁之间产生死锁,InnoDB做了死锁预防的策略:持有事务锁(行锁、表锁),可以等待获取页面锁;但反之,持有页面锁,不能等待持有事务锁。
根据死锁预防策略,在持有页面锁,加行锁的时候,如果行锁需要等待。则释放页面锁,然后等待行锁。
此时,行锁获取没有任何锁保护,因此加上行锁之后,记录可能已经被并发修改。因此,此时要重新加回页面锁,重新判断记录的状态,重新在页面锁的保护下,对记录加锁。如果此时记录未被并发修改,那么第二次加锁能够很快完成,因为已经持有了相同模式的锁。但是,如果记录已经被并发修改,那么,就有可能导致本文前面提到的死锁问题。

以上的InnoDB死锁预防处理逻辑,对应的函数,是row0sel.c::row_search_for_mysql()。感兴趣的朋友,可以跟踪调试下这个函数的处理流程,很复杂,但是集中了InnoDB精髓

1.4 剖析死锁的成因

做了这么多铺垫,有了Delete操作的3种加锁逻辑、InnoDB的死锁预防策略等准备知识之后,再回过头来分析本文最初提到的死锁问题,就会手到拈来,事半而功倍
首先,假设dltask中只有一条记录:(1, ‘a’, ‘b’, ‘c’, ‘data’)。三个并发事务,同时执行以下的这条SQL:

delete from dltask where a=’a’ and b=’b’ and c=’c’;

并且产生了以下的并发执行逻辑,就会产生死锁:
在这里插入图片描述

上面分析的这个并发流程,完整展现了死锁日志中的死锁产生的原因。其实,根据事务1步骤6,与事务0步骤3/4之间的顺序不同,死锁日志中还有可能产生另外一种情况,那就是事务1等待的锁模式为记录上的X锁 + No Gap锁(lock_mode X locks rec but not gap waiting)。这第二种情况,也是使用MySQL 5.6.15版本测试出来的死锁产生的原因。
此类死锁,产生的几个前提:
Delete操作,针对的是唯一索引上的等值查询的删除;(范围下的删除,也会产生死锁,但是死锁的场景,跟本文分析的场景,有所不同)
至少有3个(或以上)的并发删除操作;
并发删除操作,有可能删除到同一条记录,并且保证删除的记录一定存在;
事务的隔离级别设置为Repeatable Read,同时未设置innodb_locks_unsafe_for_binlog参数(此参数默认为FALSE);(Read Committed隔离级别,由于不会加Gap锁,不会有next key,因此也不会产生死锁)
使用的是InnoDB存储引擎;(MyISAM引擎根本就没有行锁)

1.5 解除死锁的占用

1.5.1 死锁分析

查看InnoDB_row_lock%相关变量

show status like 'innodb_row_lock%';

字段说明:

  • Innodb_row_lock_current_waits:当前正在等待锁定的数量
  • Innodb_row_lock_time:等待总时长: 从系统启动到现在锁定总时间长度
  • Innodb_row_lock_time_avg:等待平均时长: 每次等待所花平均时间
  • Innodb_row_lock_time_max:从系统启动到现在等待最长的一次所花时间
  • Innodb_row_lock_waits:等待总次数: 系统启动后到现在总共等待的次数

查看 INFORMATION_SCHEMA系统库,我们可以通过 INFORMATION_SCHEMA系统库提供的:查看事务、锁、锁等待的 数据表 来分析

-- 查看事务
select * from INFORMATION_SCHEMA.INNODB_TRX;
-- 查看锁
select * from INFORMATION_SCHEMA.INNODB_LOCKS;
-- 查看锁等待
select * from INFORMATION_SCHEMA.INNODB_LOCK_WAITS;
-- 查看连接情况
select * from INFORMATION_SCHEMA.PROCESSLIST;
-- 查看锁等待
select * from INFORMATION_SCHEMA.INNODB_LOCK_WAITS;
-- 查看死锁日志
show engine innodb status

1.5.2 死锁解决

锁表怎么解决?MySQL锁表怎么解锁:

  1. 查进程,主要是查找被锁表的那个进程的ID:SHOW PROCESSLIST;
  2. kill掉锁表的进程ID:KILL 10866;后面的数字即时进程的ID

注意:筛选报错

-- 筛选报错
show processlist where user = 'root';
-- 筛选可用
select * from information_schema.processlist where user = 'root';

或者通过innodblockwait_timeout来设置超时时间,一直等待直到超时。
同时设置innodbdeadlockdetect设置为on可以主动检测死锁,在innodb中这个值默认就是on开启的状态
发起死锁检测,发现死锁之后,主动回滚死锁中的事务,不需要其他事务继续

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/358527.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

为什么计算机需要操作系统?(一文详解~)

我们从三个方面来简单聊聊为什么计算机系统操作系统这个话题。 资源分配器 如果你的CPU上只需要运行一个程序&#xff0c;那么你的确不需要操作系统。 可是&#xff0c;一旦你的CPU上需要再运行一个程序&#xff0c;那么马上就会面临一个问题&#xff1a;两个程序开始竞争资源…

山东大学教授团畅谈ChatGPT革命座谈会,探讨ChatGPT发展趋势

2月18日&#xff0c;由山东大学多院系教授学者组成的山东大学教授团在济南福瑞达自贸创新产业园举行了“畅谈ChatGPT革命”座谈会&#xff0c;诸位教授学者就ChatGPT出现的影响进行了探讨。产业园首席顾问李铁岗教授向大家介绍产业园区山东大学经济学院教授、济南福瑞达自贸创新…

2023年美国大学生数学建模A题:受干旱影响的植物群落建模详解+模型代码(二)

前言 资源放CSDN上面过不了审核,都快结束了都没过审真的麻了,订阅专栏的同学直接加我微信直接发你。我只打造优质专栏。专注建模四年,博主参与过大大小小数十来次数学建模,理解各类模型原理以及每种模型的建模流程和各类题目分析方法。此专栏的目的就是为了让零基础快速使…

音视频基础之音频编码原理简介

一&#xff1a;隐蔽信号 数字音频信号如果不加压缩地直接进行传送&#xff0c;将会占用极大的带宽。例如&#xff0c;一套双声道数字音频若取样频率为44.1KHz&#xff0c;每样值按16bit量化&#xff0c;则其码率为&#xff1a; 244.1kHz16bit1.411Mbit/s 如此大的带宽将给信号…

linux系统编程2--网络编程socket知识

在linux系统编程中网络编程是使用socket&#xff08;套接字&#xff09;&#xff0c;socket这个词可以表示很多概念&#xff1a;在TCP/IP协议中&#xff0c;“IP地址TCP或UDP端口号”唯一标识网络通讯中的一个进程&#xff0c;“IP地址端口号”就称为socket。在TCP协议中&#…

(考研湖科大教书匠计算机网络)第五章传输层-第八节2:TCP连接管理实践部分

获取pdf&#xff1a;密码7281专栏目录首页&#xff1a;【专栏必读】考研湖科大教书匠计算机网络笔记导航 此部分为补充内容&#xff0c;主要使用Java实现TCP和UDP通信 一&#xff1a;UDP通信 &#xff08;1&#xff09;Java数据报套接字通信模型 Java UDP通信模型&#xff…

算法笔记(十)—— 哈希函数和哈希表

认识哈希函数和哈希表的实现 哈希函数 哈希函数&#xff1a;输入域无穷&#xff0c;输出域&#xff08;哈希值&#xff09;相对有限 哈希函数&#xff1a;相同的输入一定会返回相同的输出值 由于输入域的无限和输出域的有限&#xff0c;不同的输入可能会返回相同的输出&…

配置Tomcat性能优化

配置Tomcat性能优化 &#x1f4d2;博客主页&#xff1a; 微笑的段嘉许博客主页 &#x1f4bb;微信公众号&#xff1a;微笑的段嘉许 &#x1f389;欢迎关注&#x1f50e;点赞&#x1f44d;收藏⭐留言&#x1f4dd; &#x1f4cc;本文由微笑的段嘉许原创&#xff01; &#x1f4…

常用类(五)System类

(1)System类常见方法和案例&#xff1a; &#xff08;1&#xff09;exit:退出当前程序 我们设计的代码如下所示&#xff1a; package com.ypl.System_;public class System_ {public static void main(String[] args) {//exit: 退出当前程序System.out.println("ok1"…

详解C++的类型转换

文章目录前言一、C语言中的类型转换二、为什么C需要四种转换三、C强制类型转换3.1 static_cast3.2 reinterpret_cast3.3 const_cast3.4 dynamic_cast四、RTTI总结前言 在C语言的类型转换有一个非常大的坑,有好多悄悄地转换,有时候把我们转换的就蒙了,因为C要兼容C语言,所以C就…

docker容器单机网络

前言 通过文章 容器的本质可知&#xff0c;容器只是一个进程&#xff0c;而容器所能看到的网络栈&#xff0c;是隔离在自己的 Network Namespace 中。docker 容器单机网络支持四种网络模式&#xff0c;也都是基于 Network Namespace 实现的。本文主要是介绍这四种模式的使用方…

四、actions处理异步行为和调用

四、actions处理异步行为和调用 action&#xff1a;装方法的一个对象。 使用场景&#xff1a;在Vuex运行的环节中&#xff0c;有异步操作——>就必须经过action mutations不能进行异步操作。 最常用的案例&#xff1a;异步请求获取数据 使用方式&#xff1a; 组件中使用a…

移动WEB开发一、基础知识

零、文章目录 文章地址 个人博客-CSDN地址&#xff1a;https://blog.csdn.net/liyou123456789个人博客-GiteePages&#xff1a;https://bluecusliyou.gitee.io/techlearn 代码仓库地址 Gitee&#xff1a;https://gitee.com/bluecusliyou/TechLearnGithub&#xff1a;https:…

git ssh配置

ssh配置 执行以下命令进行配置 git config --global user.name “这里换上你的用户名” git config --global user.email “这里换上你的邮箱” 执行以下命令生成秘钥&#xff1a; ssh-keygen -t rsa -C “这里换上你的邮箱” 执行命令后需要进行3次或4次确认。直接全部回车就…

基于 ChatGPT 3.5 和 Bing 搜索引擎的会话式搜索引擎 Perplexity 初体验

一、背景 最近 ChatGPT 非常火爆&#xff0c;但是基础版经常访问失败&#xff0c;于是乎想找一些替代品。 搜到了一个 基于 ChatGPT 3.5 和 Bing 搜索的会话式搜索引擎 Perplexity 体验了下非常不错&#xff0c;值得推荐。 二、联系和区别 2.1 联系 官网在外媒社交媒体上…

三、NetworkX工具包实战3——特征工程【CS224W】(Datawhale组队学习)

开源内容&#xff1a;https://github.com/TommyZihao/zihao_course/tree/main/CS224W 子豪兄B 站视频&#xff1a;https://space.bilibili.com/1900783/channel/collectiondetail?sid915098 斯坦福官方课程主页&#xff1a;https://web.stanford.edu/class/cs224w NetworkX…

【安卓开发】安卓广播机制

读书笔记系列&#xff08;第一行代码&#xff09; 5.1 广播机制简介 标准广播&#xff1a;完全异步执行&#xff0c;广播发出后&#xff0c;所有广播接收器几乎都同一时刻收到这条广播&#xff08;无法被截断&#xff09;有序广播&#xff1a;同步执行&#xff0c;广播发出后…

优秀!19年后,它再次成为TIOBE年度编程语言

新年伊始&#xff0c;TIOBE发布了2022年度编程语言&#xff0c;C时隔19年再度登顶&#xff0c;成为2022年最受欢迎的编程语言。TIOBE在2003年首次统计编程语言的流行指数时&#xff0c;C便成为年度编程语言。2022年&#xff0c;C获得了最高的人气4.62%&#xff0c;紧随其后的是…

maven打包顺序与jvm类加载顺序

背景&#xff1a;一次dev测试过程中&#xff0c;发现代码中关于jsr303的校验失效&#xff0c;校验类如下&#xff0c;会报一个莫名其妙的运行时错误&#xff1b;遂进行排查。import javax.validation.constraints.NotBlank;Data Accessors(chain true) public class Demo {Not…

为什么会有跨域问题,代理是怎么解决的?

&#x1f4d6; 文章导航关于跨域问题同源策略跨域资源共享解决方案前端代理后端服务端代理关于跨域问题 同源策略 同源策略&#xff08;Same-origin policy&#xff09;是浏览器中一个重要的安全策略&#xff0c;它用于限制不同源之间的资源交互。其目的是为了帮助阻隔恶意文…