数据结构与算法(二):线性表

news2024/11/16 14:08:28

上一篇《数据结构与算法(一):概述》中介绍了数据结构的一些基本概念,并分别举例说明了算法的时间复杂度和空间复杂度的求解方法。这一篇主要介绍线性表。

一、基本概念

线性表是具有零个或多个数据元素的有限序列。线性表中数据元素之间的关系是一对一的关系,即除了第一个和最后一个数据元素之外,其它数据元素都是首尾相接的。

线性表的基本特征:

  • 第一个数据元素没有前驱元素;
  • 最后一个数据元素没有后继元素;
  • 其余每个数据元素只有一个前驱元素和一个后继元素。

抽象数据类型:

线性表一般包括插入、删除、查找等基本操作。其基于泛型的API接口代码如下:

public interface List<E> {
    //线性表的大小
    int size();

    //判断线性表是否为空
    boolean isEmpty();

    void clear();

    //添加新元素
    void add(E element);

    //在指定位置添加新元素
    void add(int index, E element);

    //删除元素
    E delete(int index);

    //获取元素
    E get(int index);
}

线性表按物理存储结构的不同可分为顺序表(顺序存储)和链表(链式存储):

  • 顺序表(存储结构连续,数组实现)
  • 链表(存储结构上不连续,逻辑上连续)

二、顺序表

顺序表是在计算机内存中以数组的形式保存的线性表,是指用一组地址连续的存储单元依次存储数据元素的线性结构。线性表采用顺序存储的方式存储就称之为顺序表。

其插入删除操作如图所示:

在这里插入图片描述

注意:

  • 插入操作:移动元素时,要从后往前操作,不能从前往后操作,不然元素会被覆盖。
  • 删除操作:移动元素时,要从前往后操作。
    代码如下:
import java.util.*;
public class SequenceList<E> implements List<E>, Iterable<E> {

    private static final int DEFAULT_CAPACITY = 10;
    private int size;
    private E[] elements;

    @SuppressWarnings("unchecked")
    public SequenceList() {
        size = 0;
        elements = (E[])new Object[DEFAULT_CAPACITY];
    }

    public int size() { return size;}

    public boolean isEmpty(){ return size == 0;}

    @SuppressWarnings("unchecked")
    public void clear(){
        size = 0;
        elements = (E[])new Object[DEFAULT_CAPACITY];
    }

    public void add(E element){ 
        add(size, element);
    }

    //在index插入element
    public void add(int index, E element){
        if(size >= elements.length) {
            throw new RuntimeException("顺序表已满,无法添加"); 
        }
        if(index < 0 || index > size) {
            throw new IndexOutOfBoundsException("参数输入错误"); 
        }
        for(int i=size; i>index; i--) {
            elements[i] = elements[i - 1];
        }
        elements[index] = element;
        size++;
    }

    //删除元素
    public E delete(int index){
        if(isEmpty()) {
            throw new RuntimeException("顺序表为空,无法删除"); 
        }
        if(index < 0 || index >= size) {
            throw new IndexOutOfBoundsException("参数输入错误"); 
        }
        E result = elements[index];
        for(int i=index; i<size - 1; i++) {
            elements[i] = elements[i + 1];
        }
        size--;
        elements[size] = null; //避免对象游离
        return result;
    }

    public E get(int index){
        if(index < 0 || index >= size) {
            throw new IndexOutOfBoundsException("参数输入错误"); 
        }
        return elements[index];
    }

    @Override
    public Iterator<E> iterator() {
        return new Iterator<E>() {
            int num = 0;
            @Override
            public E next() {                
                return elements[num++];
            }

            @Override
            public boolean hasNext() {
                return num < size;
            }
        };
    }

    public static void main(String[] args) {
        SequenceList<Integer> sl = new SequenceList<Integer>();
        for(int i=0;i<10;i++) {
            sl.add(i);
        }
        System.out.println("删除1位置元素:"+sl.delete(1));
         sl.add(0,15);
        for(int i=0;i<sl.size();i++) {
            System.out.print(sl.get(i)+" ");
        }
    }
}

这里需要注意,由于java中不能直接创建泛型数组,所以在顺序表的构造函数中先创建了一个Object的数组,然后将它强转为泛型数组并使用@SuppressWarnings(“unchecked”)消除未受检的警告。若对这点还有什么疑问可以参考我的学习笔记 Effective java笔记(四),泛型 中第25、26条。另外在进行删除操作时应避免对象游离。

在java中,数组一旦创建其大小不能改变,所以在上面的实现中,为了尽可能的不浪费内存必须事先准确的预估顺序表的容量。但现实应用中由于存在很多不确定因素,这往往是不切实际的。这时可使用动态调整数组大小的方法来解决这个问题。代码如下:

private void resize(int num){
    @SuppressWarnings("unchecked")
    E[] temp = (E[]) new Object[num];
    for(int i=0; i<size; i++) {
        temp[i] = elements[i];
    }
    elements = temp;
}

然后在插入和删除操作中分别加入判断语句,来调用这个方法

//在index插入element
public void add(int index, E element){
    //当顺序表满时,容量加倍
    if(size >= elements.length) {
        // throw new RuntimeException("顺序表已满,无法添加"); 
        resize(elements.length*2);
    }
    if(index < 0 || index > size) {
        throw new IndexOutOfBoundsException("参数输入错误"); 
    }
    ....
}

//删除元素
public E delete(int index){
    ....
    elements[size] = null;

    //当元素数量小于容量的1/4时,容量减半
    if(size>0 && size <= elements.length/4) {
        resize(elements.length/2);
    }
    return result;
}

**注意:**在删除操作中检查条件为「顺序表的大小是否小于容量的 1/4」,而不是1/2。这样可以避免在1/2这个零界点处反复进行插入删除操作时,数组进行频繁复制。

顺序表效率分析:

  • 顺序表插入和删除一个元素,最好情况下其时间复杂度(这个元素在最后一个位置)为O(1),最坏情况下其时间复杂度为O(n)。
  • 顺序表支持随机访问,读取一个元素的时间复杂度为O(1)。

顺序表的优缺点:

  • 优点:支持随机访问
  • 缺点:插入和删除操作需要移动大量的元素,造成存储空间的碎片。
    顺序表适合元素个数变化不大,且更多是读取数据的场合。

三、链表

链表是一种物理存储单元上非连续、非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的。链表由一系列结点组成,每个结点包括两个部分:一个是存储数据元素的数据域,另一个是存储下一个结点地址的指针域。

链表根据构造方式的不同可以分为:

  • 单向链表
  • 单向循环链表
  • 双向链表

1、单向链表

单链表有带头结点和不带头结点两种结构,其结构如下

在这里插入图片描述

在带头结点的单链表中,其第一个结点被称作头结点。第一个存放数据元素的结点称作首元结点,头结点指向首元结点。头结点是为了操作的统一与方便而设立的,其一般不放数据(也可存放链表的长度、用做监视哨等)。此结点不能计入链表长度值。

带头结点的单链表的优点:

  • 在链表第一个位置上进行的操作(插入、删除)和其它位置上的操作一致,无须进行特殊处理;
  • 无论链表是否为空,head一定不为空,这使得空表和非空表的处理一致。

由于带头结点的链表更容易操作,这里仅实现带头结点的单链表

带头结点的链表插入与删除示意图:

在这里插入图片描述

代码如下:

import java.util.*;
public class LinkedList<E> implements List<E>, Iterable<E>{
    private Node head;
    private int size;

    private class Node {
        E element;
        Node next;
    }

    LinkedList() {
        head = new Node();
    }

    @Override public int size() { return size;}
    
    @Override public boolean isEmpty() { return size==0;}

    @Override public void clear() {
        head = new Node();
        size = 0;
    }

    @Override public void add(E element) {
        add(0, element);
    }

    @Override public void add(int index, E element) {
        if(index < 0 || index > size)
            throw new IndexOutOfBoundsException("参数输入错误");
        Node current = location(index);
        Node newNode = new Node();
        newNode.element = element;        
        Node node = current.next;
        current.next = newNode;
        newNode.next = node;
        size++;
    }

    //找到第index个结点前的结点
    private Node location(int index){
        Node current = head;
        for(int i=0; i<index; i++) {
            current = current.next;
        }
        return current;
    }
    
    @Override public E get(int index) {
        if(index < 0 || index >= size)
            throw new IndexOutOfBoundsException("参数输入错误");
        return location(index + 1).element;
    }

    //删除第index个元素
    @Override public E delete(int index) {
        if(index < 0 || index >= size)
            throw new IndexOutOfBoundsException("参数输入错误");
        Node current = location(index);
        E element = current.next.element;
        current.next = current.next.next;
        size--;
        return element;
    }

    @Override
    public Iterator<E> iterator() {
        return new Iterator<E>() {
            Node current = head;
            @Override
            public E next() {  
                current = current.next;              
                return current.element;
            }

            @Override
            public boolean hasNext() {
                return current.next != null;
            }
        };
    }

    public static void main(String[] args) throws Exception{
        LinkedList<Integer> list = new LinkedList<Integer>();
        for(int i=0;i<10;i++) {
            list.add(i);
        }
        System.out.println("删除0位置元素:"+list.delete(0));
        list.add(0,15);

        for (Integer ele : list ) {
            System.out.print(ele + " ");
        }
    }
}

单链表效率分析:

在单链表上插入和删除数据时,首先需要找出插入或删除元素的位置。对于单链表其查找操作的时间复杂度为 O(n),所以

链表插入和删除操作的时间复杂度均为 O(n)

链表读取操作的时间复杂度为 O(n)

单链表优缺点:

优点:不需要预先给出数据元素的最大个数,单链表插入和删除操作不需要移动数据元素
缺点:不支持随机读取,读取操作的时间复杂度为 O(n)。

2、单向循环链表

将单链表中终端结点的指针指向头结点,使整个单链表形成一个环,这种头尾相接的单链表称为单循环链表,简称循环链表。

对于循环链表,为了使空链表与非空链表处理一致,通常设一个头结点。如下图:

在这里插入图片描述

循环链表和单链表的主要差异在于链表结束的判断条件不同,单链表为current.next是否为空,而循环链表为current.next不等于头结点。对于循环链表的增删改查操作与单链表基本相同,仅仅需要将链表结束的条件变成current.next != head即可,这里就不在给出了。

在单链表中,我们有了头结点时,对于最后一个结点的访问需要 O(n)的时间,因为我们需要将单链表全部遍历一次。哪有没有可能用 O(1)的时间访问到终端结点呢?当然可以,我们只需改造一下单链表,使用指向终端结点的尾指针来表示循环链表,这时访问开始结点(不是头结点)和终端结点的操作都为 O(1)。它们的访问操作分别为end.next.next和end,其中end为指向终端结点的引用。这个设计对两个循环链表的合并特别有用,可以避免遍历链表的时间消耗。如:

在这里插入图片描述

合并两个循环链表的代码:

public Node merge(Node endA, Node endB) {
    Node headA = endA.next; //保存A表的头结点
    endA.next = endB.next.next;
    endB.next = headA;
    return endB;
}

3、双向链表

双向链表是在单链表的每个结点中,再设置一个指向其前驱结点的指针域。使得两个指针域一个指向其前驱结点,一个指向其后继结点。

双向链表的结点表示:

private class Node {
    E element;
    Node prior; //指向前驱
    Node next;
}

对于双向链表,其空和非空结构如下图:

在这里插入图片描述

双向链表是单链表扩展出来的结构,它可以反向遍历、查找元素,它的很多操作和单链表相同,比如求长度size()、查找元素get()。这些操作只涉及一个方向的指针即可。插入和删除操作时,需要更改两个指针变量。

插入操作:注意操作顺序
在这里插入图片描述

在current后插入element的代码为:

element.prior = current;
element.next = current.next;
current.next.prior = element;
current.next = element;

删除操作相对比较简单,删除current结点的代码为:

current.prior.next = current.next;
current.next.prior = current.prior;
current = null;

双向链表相对于单链表来说占用了更多的空间,但由于其良好的对称性,使得能够方便的访问某个结点的前后结点,提高了算法的时间性能。是用空间换时间的一个典型应用。

4、静态链表

用数组描述的链表叫静态链表,它是那些没有指针和引用的语言,如Basic、Fortran等,实现链表的方式。由于现在的高级程序语言,一般都拥有指针或引用,可以使用更灵活的指针或引用来实现动态链表,所以对于静态链表仅掌握其算法思想即可。

静态链表的思想:

  • 让数组的每个元素有两个数据域data和cur组成,其中data用来存放数据元素,cur用来存放元素的后继在数组中的下标。我们把cur称为游标。

  • 通常把数组中未被使用的位置称为备用链表,而数组的第一个位置(下标为0的位置)的cur存放备用链表的第一个结点的下标;数组的最后一个位置的cur则存放第一个有元素的位置的下标,相当于链表的头结点作用。

静态链表状态图:

在这里插入图片描述

代码如下:

import java.util.*;
public class StaticList<E> implements List<E>, Iterable<E> {

    private static final int DEFAULT_CAPACITY = 100;
    private int size;
    private Node[] nodes;

    private class Node {
        E element;
        int cur;
    }

    public StaticList() {
        initList();
        
    }

    @SuppressWarnings("unchecked")
    private void initList() {
        size = 0;
      //注意这句,不能直接new Node[DEFAULT_CAPACITY],java不允许创建泛型数组
        nodes = new StaticList.Node[DEFAULT_CAPACITY]; 
        for(int i=0; i<nodes.length; i++) {
            nodes[i] = new Node();
            nodes[i].cur = i + 1;
        }
        nodes[nodes.length - 1].cur = 0;
    }

    public int size() { return size;}

    public boolean isEmpty(){ return size == 0;}

    public void clear(){
        initList();
    }

    public void add(E element){ 
        add(0, element);
    }

    //在index插入element
    public void add(int index, E element){
        if(index < 0 || index > size) {
            throw new IndexOutOfBoundsException("参数输入错误"); 
        }
        Node prior = location(index);
        int newCur = malloc();
        if(newCur == 0) {
            throw new RuntimeException("顺序表已满,无法添加");
        }
        nodes[newCur].element = element;
        nodes[newCur].cur = prior.cur;
        prior.cur = newCur;
        size++;
    }

    //找到第index个结点前的结点
    private Node location(int index){
        Node prior = nodes[nodes.length - 1];
        for(int i=0; i<index; i++) {
            prior = nodes[prior.cur];
        }
        return prior;
    }

    //分配空间,若备用链表非空,返回分配的结点的下标,否则返回0
    private int malloc() {
        int i = nodes[0].cur;
        if(i != 0) {
            nodes[0].cur = nodes[i].cur; //备用链表的下一个位置
        }
        return i;
    }

    //将下标为k的空闲结点回收到备用链表
    private void free(int index) {
        nodes[index].cur = nodes[0].cur;
        nodes[0].cur = index;
    }

    //删除元素
    public E delete(int index){
        if(isEmpty()) {
            throw new RuntimeException("顺序表为空,无法删除"); 
        }
        if(index < 0 || index >= size) {
            throw new IndexOutOfBoundsException("参数输入错误"); 
        }
        Node prior = location(index);
        int temp = prior.cur; //要删除元素的下标
        prior.cur = nodes[temp].cur;
        E result = nodes[temp].element;
        nodes[temp].element = null;
        size--;
        free(temp);
        return result;
    }

    public E get(int index){
        if(index < 0 || index >= size) {
            throw new IndexOutOfBoundsException("参数输入错误"); 
        }
        return location(index + 1).element;
    }

    @Override
    public Iterator<E> iterator() {
        return new Iterator<E>() {
            int temp = nodes[nodes.length - 1].cur;
            @Override
            public E next(){  
                E result = nodes[temp].element;  
                temp = nodes[temp].cur;          
                return result;
            }

            @Override
            public boolean hasNext() {
                return temp != 0;
            }
        };
    }
    
    //测试
    public static void main(String[] args){
        StaticList<Integer> sl = new StaticList<Integer>();
        for(int i=0;i<10;i++) {
            sl.add(i);
        }
        System.out.println("删除1位置元素:"+sl.delete(1));
         sl.add(1,15);
        for(int i=0;i<sl.size();i++) {
            System.out.print(sl.get(i)+" ");
        }
    }
}

为了实现数组空间的循环利用,静态链表将所有未被使用过的及已经被删除的元素空间用游标链成一个备用的链表。每当插入时就从备用链表上取第一个结点作为待插入的新结点,删除时将结点回收到备用链表中。上面代码中的malloc()和free()方法分别对应了这两种操作。静态链表的插入和删除等操作和单链表类似,仅需注意结点的cur为一个int变量,具体操作可以参考上面的代码。

另外需要注意:静态链表初始化时需要创建一个内部类泛型数组StaticList.Node[ ],我们都知道,java中不能创建泛型数组,一种解决方案是先创建一个Object类型的数组,然后再强转为需要的类型。如:

nodes = (Node[])new Object[DEFAULT_CAPACITY]; 

但是在上面的代码中,使用这种方法运行时会报ClassCastException,解决方法是

nodes = new StaticList.Node[DEFAULT_CAPACITY];

这样就可以解决这个问题,剩下一个未受检的警告使用@SuppressWarnings(“unchecked”)注解消除即可。

静态链表有优缺点:

  • 优点:插入删除操作时,只需要修改游标,无需移动元素

  • 缺点:需要事先预估链表的容量;不能随机读取元素;需要人为的管理数组的分配(类似于管理内存分配),失去了java语言的优点。

总的来说,静态链表是为没有指针的语言设计的一种实现链表的方法,尽管可能用不上,但掌握其设计思想还是很有必要的。

总结一下,这节主要介绍了线性表两种不同结构(顺序存储结构和链式存储结构)的实现方法,它们是其他数据结构的基础,也是现在企业面试中最常考的数据结构类型之一。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/351379.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

零售电子标签解决方案

电子货架标签系统&#xff08;ESLs&#xff09;&#xff0c;是一种放置在货架上、可替代传统纸质价格标签的电子显示装置&#xff0c; 每一个电子货架标 签通过有线或者无线网络与商场计算机数据库相连&#xff0c; 并将最新的商品价格通过电子货架标签上的屏显示出来。 电子…

2023年数学建模美赛D题(Prioritizing the UN Sustainability Goals)分析与编程

2023年数学建模美赛D题分析建模与编程 重要说明&#xff1a; 本文介绍2023年美赛题目&#xff0c;并进行简单分析&#xff1b;本文首先对 D题进行深入分析&#xff0c;其它题目分析详见专题讨论&#xff1b;本文及专题分析将在 2月17日每3小时更新一次&#xff0c;完全免费&am…

使用chatgpt生成快速入眠笔记

以下是使用chatgpt生成快速入眠笔记的简单过程 可以发现&#xff0c;增加详细两个字&#xff0c;可以让它表述的更明白。 通过询问“还有其他方法吗”&#xff0c;获取更多可能性&#xff0c;当然你也可以直接说继续 但实测继续有时候不会记住上一条提问 详细讲解一下程序员怎…

类似LeetCode的登录页面(小程序版)

前言每一个项目都会有用户端的注册和登录页面&#xff0c;对于刚入门的小白来说&#xff0c;在UI设计方面不太擅长&#xff0c;就算大致的UI界面设计出来了&#xff0c;但是落实到代码上来实现的时候就很容易卡住。这篇博客主要介绍的就是仿作一个类似LeetCode登录的简约大方页…

离线环境轻量级自动化部署

流程图&#xff1a; 常规系统发布的痛点 服务器频繁重启&#xff0c;上面部署的应用服务不能随之重启&#xff0c;导致服务时常宕机应用手动部署相对比较麻烦&#xff0c;步骤繁琐应用发布环境取决于发布人本地环境&#xff0c;导致不同发布人每次发布环境不一致&#xff0c;导…

【玩转多核异构】双核高速率CAN-FD评测——飞凌嵌入式

为了能够让更多的工程师朋友了解多核异构处理器&#xff0c;飞凌嵌入式特别推出了【玩转多核异构】专题&#xff0c;帮助大家解决在多核异构处理器的开发过程中遇到的问题。【玩转多核异构】专题持续更新中&#xff0c;欢迎您的持续关注。引言凭借实时性、抗干扰性和安全性等优…

Redis 开发规范

原创 | Java 2021 超神之路&#xff0c;很肝~中文详细注释的开源项目RPC 框架 Dubbo 源码解析网络应用框架 Netty 源码解析消息中间件 RocketMQ 源码解析数据库中间件 Sharding-JDBC 和 MyCAT 源码解析作业调度中间件 Elastic-Job 源码解析分布式事务中间件 TCC-Transaction 源…

详细总结Ansible中使用playbook

文章目录前言一、Playbook的功能二、YAML三、playbook执行命令1.使用ansible-playbook部署ftp服务&#xff0c;并开启匿名用户访问权利2.使用ansible-playbook部署apache服务&#xff0c;设定默认发布文件内容为www.westos.org3.tags&#xff1a;标签四、使用vim解决yaml书写格…

使用git中可能出现的问题

问题1&#xff1a;如果遇到自己的文件在远程仓库dev分支被别人修改了&#xff0c;自己在本地仓库test分支继续在写代码先拉取最新的代码 覆盖本地dev分支 TortoiseGit->Pull被修改如图2.拉取最新的代码(拉取成功后 本地dev分支user有四条属性)3.切换到自己的分支tortoiseGit…

C++009-C++循环结构while

文章目录C009-C循环结构whilewhile循环while循环举例题目描述 对折多少次能超过nmm题目描述 输入整数和超过n题目描述 输入若干个大写字母&#xff0c;输出对应的小写字母题目描述 输入整数&#xff0c;逆序输出作业在线练习&#xff1a;总结C009-C循环结构while 在线练习&…

模型转换 PyTorch转ONNX 入门

前言 本文主要介绍如何将PyTorch模型转换为ONNX模型&#xff0c;为后面的模型部署做准备。转换后的xxx.onnx模型&#xff0c;进行加载和测试。最后介绍使用Netron&#xff0c;可视化ONNX模型&#xff0c;看一下网络结构&#xff1b;查看使用了那些算子&#xff0c;以便开发部署…

计算机网络第1章(概述)学习笔记

❤ 作者主页&#xff1a;欢迎来到我的技术博客&#x1f60e; ❀ 个人介绍&#xff1a;大家好&#xff0c;本人热衷于Java后端开发&#xff0c;欢迎来交流学习哦&#xff01;(&#xffe3;▽&#xffe3;)~* &#x1f34a; 如果文章对您有帮助&#xff0c;记得关注、点赞、收藏、…

PPS文件如何转换成PPT?附两种方法

在工作中&#xff0c;PPS文件的使用还是很广泛的&#xff0c;因为作为幻灯片放映文件&#xff0c;点击后就能直接播放&#xff0c;十分方便。但如果想要修改PPS里的内容&#xff0c;PPS是无法编辑的&#xff0c;我们需要把文件转换成PPT&#xff0c;再进行修改。 那PPS文件如何…

详细解读ChatGPT:如何调用ChatGPT的API接口到官方例子的说明以及GitHub上的源码应用和csdn集成的ChatGPT

文章目录1. 解读ChatGPT1.1 词语解释1.2 功能解读2. GitHub上ChatGPT的应用源码3. 调用ChatGPT的API4. 官方例子说明5. 集成ChatGPT自ChatGPT出来到如今&#xff0c;始终走在火热的道路上&#xff0c;如今日活用户破亿&#xff0c;他为何有如此大的魅力&#xff0c;深受广大用户…

通用 GPU 领先企业登临科技加入龙蜥社区,完成与龙蜥操作系统的兼容适配

近日&#xff0c;上海登临科技有限公司&#xff08;以下简称“登临科技”&#xff09;签署了 CLA&#xff08;Contributor License Agreement&#xff0c;贡献者许可协议&#xff09;&#xff0c;正式加入龙蜥社区&#xff08;OpenAnolis&#xff09;。作为国内通用 GPU 领先企…

深入浅出带你学习GlassFish中间件漏洞

前文 上文给大家带来了WEBLOGIC常见的漏洞不知道大家理解了没有&#xff0c;今天给大家带来一个新的中间件漏洞的讲解——glassfish&#xff0c;本文会先介绍该中间件的简单信息然后解析一下该中间件可能存在的漏洞类型&#xff0c;下面我们展开文章来讲。 GlassFish GlassF…

2023美国大学生数学建模竞赛E题思路解析

背景&#xff1a;光污染是指任何过多或不当使用人造光的表现。我们所称为光污染的一些现象包括光侵入、过亮、以及光混乱。这些现象最容易在大城市太阳落山后观察到天空中的发光&#xff1b;然而&#xff0c;它们也可能发生在更偏远的地区。光污染改变了我们对夜空的看法&#…

(三十四)Vue之新生命周期钩子nextTick

文章目录普通实现的一个问题解决问题nextTick上一篇&#xff1a;&#xff08;三十三&#xff09;Vue之消息订阅与发布 首先先看这一个需求&#xff0c;给每个任务项新增一个编辑按钮 当编辑按钮点击时&#xff0c;任务项就会变成文本框&#xff0c;并且自动获取焦点 普通实…

中国天气——对流性天气过程复习笔记

对流性天气过程 对流性天气十分激烈&#xff0c;影响范围相对较小&#xff0c;持续时间短&#xff0c;通常是局部灾害性天气 雷暴结构 产生雷暴的积雨云叫雷暴云&#xff0c;也叫雷暴单体&#xff0c;水平尺度约为十几千米多个雷暴单体成群聚集在一起叫做雷暴群&#xff0c;…

【C语言】数组的声明和使用(一维数组、多维数组)

数组一、什么是数组&#xff1f;二、一维数组&#xff08;一&#xff09;一维数组声明&#xff08;二&#xff09;一维数组初始化&#xff08;三&#xff09;一维数组的引用三、多维数组&#xff08;以二维数组为例&#xff09;&#xff08;一&#xff09;二维数组声明&#xf…