一、摘要
在之前的Barra模型系列文章中,我们已经初步讲解、构建了Size因子和Beta因子,并分别创建了对应的单因子策略。通过回测发现,其中Size因子的小市值效应具有很强的收益能力。而本篇文章将在该系列下进一步构建Momentum因子。
二、模型理论
Barra模型的Momentum因子的计算方法如下:
基于上述定义,Barra模型的动量因子是由最近2年期的长期动量减去最近1个月的短期动量构建而成的,而动量的构成是基于指数加权移动平均方法,而该方法在Beta因子中已有用到。无风险收益假设为2%。日频的1个月短期动量往往具有反转效应,为此在计算长期动量时需要剔除近期涨跌幅的影响(切莫追高哦)。
三、因子分析
使用alphalens进行对Momentum因子进行分析(2022年)。
从收益分析来看,Momentum因子的alpha收益随着调仓周期的增大而降低,beta收益随着调仓周期的增大而增大,但alpha收益远大于beta收益;因子值的最小分组贡献正收益,最大分组贡献负收益,且收益主要集中于负收益端。
从信息系数来看,IC均值(IC Mean)为正,IC均值随着调仓周期单调递增,且IC均值大于0.05,选股能力强;10日和21日的IC标准差相对较小,经计算可知21天的调仓周期下IR为1.11(>0.5),该周期下因子稳定获取超额收益的能力较强。
从因子分组的平均期望收益来看,Beta因子的单调性很好,但问题在于收益主要集中于弱动量端的负收益上,而强动量端虽然贡献了正收益,但第4组-第10组的正收益区分度较小,且正收益并不是很强。这说明后边构建的股票多头策略可能收益并不能很亮眼。
四、回测分析
回测时间:2022-01-01至2023-01-31(月底换股)
回测品种:全A股(剔除ST股、停牌股和一年以内的次新股)
初始资金:100万
手续费:0.0007(双边万二佣金+单边千一印花税,共千1.4,即双边万7)
滑点:0.00123(双边千1.23)
最大持仓数量:30只
从回测结果来看,策略年化收益率为-3.55%,最大回撤29.92%。虽然能够跑赢大盘指数,但波动率和最大回撤偏大,策略效果并不理想。
而这与我们前文的因子分析结论相一致。虽然强动量在2022年的A股市场表现一般,但弱动量能够贡献很强的负收益,虽然不能直接做空弱动量,但如果在其他策略中过滤弱动量股票,相信能够带来很大的改善。
本期的策略源码已免费分享至掘金量化社区,访问下方链接即可前往获取。
传送门:https://bbs.myquant.cn/thread/3343