目录
- 回溯法
- 剪枝优化
题目来源
77. 组合
回溯法
- 1.递归函数的返回值以及参数
在这里要定义两个全局变量,一个用来存放符合条件单一结果,一个用来存放符合条件结果的集合。
List<List<Integer>> result = new ArrayList<>();
LinkedList<Integer> path = new LinkedList<>();
其实不定义这两个全局变量也是可以的,把这两个变量放进递归函数的参数里,但函数里参数太多影响可读性,所以我定义全局变量了。
函数里一定有两个参数,既然是集合n里面取k个数,那么n和k是两个int型的参数。
然后还需要一个参数,为int型变量startIndex,这个参数用来记录本层递归的中,集合从哪里开始遍历(集合就是[1,…,n] )。
从下图中红线部分可以看出,在集合[1,2,3,4]取1之后,下一层递归,就要在[2,3,4]中取数了,那么下一层递归如何知道从[2,3,4]中取数呢,靠的就是startIndex。
所以需要startIndex来记录下一层递归,搜索的起始位置。
那么整体代码如下:
List<List<Integer>> result = new ArrayList<>();
LinkedList<Integer> path = new LinkedList<>();
void combineHelper(int n, int k, int startIndex)
- 2.回溯函数终止条件
什么时候到达所谓的叶子节点了呢?
path这个数组的大小如果达到k,说明我们找到了一个子集大小为k的组合了,在图中path存的就是根节点到叶子节点的路径。
如图红色部分:
此时用result二维数组,把path保存起来,并终止本层递归。
所以终止条件代码如下:
//终止条件
if(path.size() == k){
result.add(new ArrayList<>(path));
return;
}
- 3.单层搜索的过程
回溯法的搜索过程就是一个树型结构的遍历过程,在如下图中,可以看出for循环用来横向遍历,递归的过程是纵向遍历。
如此我们才遍历完图中的这棵树。
for循环每次从startIndex开始遍历,然后用path保存取到的节点i。
代码如下:
for(int i = startIndex;i <= n;i++){ // 控制树的横向遍历
path.add(i); // 处理节点
combineHelper(n, k, i+1); // 递归:控制树的纵向遍历,注意下一层搜索要从i+1开始
path.removeLast(); // 回溯,撤销处理的节点
}
可以看出combineHelper(递归函数)通过不断调用自己一直往深处遍历,总会遇到叶子节点,遇到了叶子节点就要返回。
完整代码如下:
class Solution {
List<List<Integer>> result = new ArrayList<>();
LinkedList<Integer> path = new LinkedList<>();
public List<List<Integer>> combine(int n, int k) {
combineHelper(n, k, 1);
return result;
}
private void combineHelper(int n, int k, int startIndex){
//终止条件
if(path.size() == k){
result.add(new ArrayList<>(path));
return;
}
for(int i = startIndex;i <= n;i++){ // 控制树的横向遍历
path.add(i); // 处理节点
combineHelper(n, k, i+1); // 递归:控制树的纵向遍历,注意下一层搜索要从i+1开始
path.removeLast(); // 回溯,撤销处理的节点
}
}
}
剪枝优化
在遍历的过程中有如下代码:
for(int i = startIndex;i <= n;i++){ // 控制树的横向遍历
path.add(i); // 处理节点
combineHelper(n, k, i+1); // 递归:控制树的纵向遍历,注意下一层搜索要从i+1开始
path.removeLast(); // 回溯,撤销处理的节点
}
这个遍历的范围是可以剪枝优化的,怎么优化呢?
来举一个例子,n = 4,k = 4的话,那么第一层for循环的时候,从元素2开始的遍历都没有意义了。 在第二层for循环,从元素3开始的遍历都没有意义了。
这么说有点抽象,如图所示:
图中每一个节点(图中为矩形),就代表本层的一个for循环,那么每一层的for循环从第二个数开始遍历的话,都没有意义,都是无效遍历。
所以,可以剪枝的地方就在递归中每一层的for循环所选择的起始位置。
如果for循环选择的起始位置之后的元素个数 已经不足 我们需要的元素个数了,那么就没有必要搜索了。
注意代码中i,就是for循环里选择的起始位置。
for(int i = startIndex;i <= n;i++)
接下来看一下优化过程如下:
已经选择的元素个数:path.size();
所需需要的元素个数为: k - path.size();
列表中剩余元素(n-i) >= 所需需要的元素个数(k - path.size())
在集合n中至多要从该起始位置 : i <= n - (k - path.size()) + 1,开始遍历
为什么有个+1呢,因为包括起始位置,我们要是一个左闭的集合。
举个例子,n = 4,k = 3, 目前已经选取的元素为0(path.size为0),n - (k - 0) + 1 即 4 - ( 3 - 0) + 1 = 2。
从2开始搜索都是合理的,可以是组合[2, 3, 4]。
优化后整体代码如下:
class Solution {
List<List<Integer>> result = new ArrayList<>();
LinkedList<Integer> path = new LinkedList<>();
public List<List<Integer>> combine(int n, int k) {
combineHelper(n, k, 1);
return result;
}
private void combineHelper(int n, int k, int startIndex){
//终止条件
if(path.size() == k){
result.add(new ArrayList<>(path));
return;
}
for(int i = startIndex;i <= n - (k - path.size()) + 1;i++){ // 控制树的横向遍历
path.add(i); // 处理节点
combineHelper(n, k, i+1); // 递归:控制树的纵向遍历,注意下一层搜索要从i+1开始
path.removeLast(); // 回溯,撤销处理的节点
}
}
}