Python 数据可视化的 3 大步骤,你知道吗?

news2024/12/23 7:26:21

Python实现可视化的三个步骤:

  • 确定问题,选择图形
  • 转换数据,应用函数
  • 参数设置,一目了然

1、首先,要知道我们用哪些库来画图?

matplotlib

Python中最基本的作图库就是matplotlib,是一个最基础的Python可视化库,一般都是从matplotlib上手Python数据可视化,然后开始做纵向与横向拓展。

Seaborn

是一个基于matplotlib的高级可视化效果库,针对的点主要是数据挖掘和机器学习中的变量特征选取,seaborn可以用短小的代码去绘制描述更多维度数据的可视化效果图

其他库还包括

Bokeh(是一个用于做浏览器端交互可视化的库,实现分析师与数据的交互);Mapbox(处理地理数据引擎更强的可视化工具库)等等

本篇文章主要使用matplotlib进行案例分析

第一步:确定问题,选择图形

业务可能很复杂,但是经过拆分,我们要找到我们想通过图形表达什么具体问题。分析思维的训练可以学习《麦肯锡方法》和《金字塔原理》中的方法。

这是网上的一张关于图表类型选择的总结。

图片

在Python中,我们可以总结为以下四种基本视觉元素来展现图形:

  • :scatter plot 二维数据,适用于简单二维关系;
  • 线:line plot 二维数据,适用于时间序列;
  • 柱状:bar plot 二维数据,适用于类别统计;
  • 颜色:heatmap 适用于展示第三维度;

数据间存在分布,构成,比较,联系以及变化趋势等关系。对应不一样的关系,选择相应的图形进行展示。

第二步:转换数据,应用函数

数据分析和建模方面的大量编程工作都是用在数据准备的基础上的:加载、清理、转换以及重塑。我们可视化步骤也需要对数据进行整理,转换成我们需要的格式再套用可视化方法完成作图。

下面是一些常用的数据转换方法:

  • 合并:merge,concat,combine_frist(类似于数据库中的全外连接)
  • 重塑:reshape;轴向旋转:pivot(类似excel数据透视表)
  • 去重:drop_duplicates
  • 映射:map
  • 填充替换:fillna,replace
  • 重命名轴索引:rename

将分类变量转换‘哑变量矩阵’的get_dummies函数以及在df中对某列数据取限定值等等。

函数则根据第一步中选择好的图形,去找Python中对应的函数。

第三步:参数设置,一目了然

原始图形画完后,我们可以根据需求修改颜色(color),线型(linestyle),标记(maker)或者其他图表装饰项标题(Title),轴标签(xlabel,ylabel),轴刻度(set_xticks),还有图例(legend)等,让图形更加直观。

第三步是在第二步的基础上,为了使图形更加清晰明了,做的修饰工作。具体参数都可以在制图函数中找到。

2、可视化作图基础

Matplotlib作图基础

#导入包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

Figure和Subplot

matplotlib的图形都位于Figure(画布)中,Subplot创建图像空间。不能通过figure绘图,必须用add_subplot创建一个或多个subplot。

figsize可以指定图像尺寸。

#创建画布
fig = plt.figure()
<Figure size 432x288 with 0 Axes>
#创建subplot,221表示这是2行2列表格中的第1个图像。
ax1 = fig.add_subplot(221)
#但现在更习惯使用以下方法创建画布和图像,2,2表示这是一个2*2的画布,可以放置4个图像
fig , axes = plt.subplots(2,2,sharex=True,sharey=True)
#plt.subplot的sharex和sharey参数可以指定所有的subplot使用相同的x,y轴刻度。

图片

利用Figure的subplots_adjust方法可以调整间距。

subplots_adjust(left=None,bottom=None,right=None,top=None,wspace=None,hspace=None)

图片

颜色color,标记marker,和线型linestyle

matplotlib的plot函数接受一组X和Y坐标,还可以接受一个表示颜色和线型的字符串缩写:‘g–’,表示颜色是绿色green,线型是’–'虚线。也可以使用参数明确的指定。

线型图还可以加上一些标记(marker),来突出显示数据点的位置。标记也可以放在格式字符串中,但标记类型和线型必须放在颜色后面

plt.plot(np.random.randn(30),color='g',linestyle='--',marker='o')
[<matplotlib.lines.Line2D at 0x8c919b0>]

图片

刻度,标签和图例

plt的xlim、xticks和xtickslabels方法分别控制图表的范围和刻度位置和刻度标签

调用方法时不带参数,则返回当前的参数值;调用时带参数,则设置参数值。

plt.plot(np.random.randn(30),color='g',linestyle='--',marker='o')
plt.xlim() #不带参数调用,显示当前参数;
#可将xlim替换为另外两个方法试试
(-1.4500000000000002, 30.45)

图片

plt.plot(np.random.randn(30),color='g',linestyle='--',marker='o')
plt.xlim([0,15]) #横轴刻度变成0-15
(0, 15)

图片

设置标题,轴标签,刻度以及刻度标签

fig = plt.figure();ax = fig.add_subplot(1,1,1)
ax.plot(np.random.randn(1000).cumsum())
ticks = ax.set_xticks([0,250,500,750,1000]) #设置刻度值
labels = ax.set_xticklabels(['one','two','three','four','five']) #设置刻度标签
ax.set_title('My first Plot') #设置标题
ax.set_xlabel('Stage') #设置轴标签
Text(0.5,0,'Stage')

图片

添加图例

图例legend是另一种用于标识图标元素的重要工具。可以在添加subplot的时候传入label参数。

fig = plt.figure(figsize=(12,5));ax = fig.add_subplot(111)
ax.plot(np.random.randn(1000).cumsum(),'k',label='one') #传入label参数,定义label名称
ax.plot(np.random.randn(1000).cumsum(),'k--',label='two')
ax.plot(np.random.randn(1000).cumsum(),'k.',label='three')
#图形创建完后,只需要调用legend参数将label调出来即可。
ax.legend(loc='best') #要求不是很严格的话,建议使用loc=‘best’参数来让它自己选择最佳位置
<matplotlib.legend.Legend at 0xa8f5a20>

图片

注解

除标准的图表对象之外,我们还可以自定义添加一些文字注解或者箭头。

注解可以通过text,arrow和annotate等函数进行添加。text函数可以将文本绘制在指定的x,y坐标位置,还可以进行自定义格式

plt.plot(np.random.randn(1000).cumsum())
plt.text(600,10,'test ',family='monospace',fontsize=10)
#中文注释在默认环境下并不能正常显示,需要修改配置文件,使其支持中文字体。具体步骤请自行搜索。

保存图表到文件

利用plt.savefig可以将当前图表保存到文件。例如,要将图表保存为png文件,可以执行

文件类型是根据拓展名而定的。其他参数还有:

  • fname:含有文件路径的字符串,拓展名指定文件类型
  • dpi:分辨率,默认100 facecolor,edgcolor 图像的背景色,默认‘w’白色
  • format:显示设置文件格式(‘png’,‘pdf’,‘svg’,‘ps’,'jpg’等)
  • bbox_inches:图表需要保留的部分。如果设置为“tight”,则将尝试剪除图像周围的空白部分
plt.savefig('./plot.jpg') #保存图像为plot名称的jpg格式图像
<Figure size 432x288 with 0 Axes>

3、Pandas中的绘图函数

Matplotlib作图

matplotlib是最基础的绘图函数,也是相对较低级的工具。组装一张图表需要单独调用各个基础组件才行。Pandas中有许多基于matplotlib的高级绘图方法,原本需要多行代码才能搞定的图表,使用pandas只需要短短几行。

我们使用的就调用了pandas中的绘图包。

import matplotlib.pyplot as plt

线型图

Series和DataFrame都有一个用于生成各类图表的plot方法。默认情况下,他们生成的是线型图。

s = pd.Series(np.random.randn(10).cumsum(),index=np.arange(0,100,10))
s.plot() #Series对象的索引index会传给matplotlib用作绘制x轴。
<matplotlib.axes._subplots.AxesSubplot at 0xf553128>

图片

df = pd.DataFrame(np.random.randn(10,4).cumsum(0),columns=['A','B','C','D'])
df.plot() #plot会自动为不同变量改变颜色,并添加图例
<matplotlib.axes._subplots.AxesSubplot at 0xf4f9eb8>

图片

Series.plot方法的参数

  • label:用于图表的标签
  • style:风格字符串,‘g–’
  • alpha:图像的填充不透明度(0-1)
  • kind:图表类型(bar,line,hist,kde等)
  • xticks:设定x轴刻度值
  • yticks:设定y轴刻度值
  • xlim,ylim:设定轴界限,[0,10]
  • grid:显示轴网格线,默认关闭
  • rot:旋转刻度标签
  • use_index:将对象的索引用作刻度标签
  • logy:在Y轴上使用对数标尺

DataFrame.plot方法的参数

DataFrame除了Series中的参数外,还有一些独有的选项。

  • subplots:将各个DataFrame列绘制到单独的subplot中
  • sharex,sharey:共享x,y轴
  • figsize:控制图像大小
  • title:图像标题
  • legend:添加图例,默认显示
  • sort_columns:以字母顺序绘制各列,默认使用当前顺序

柱状图

在生成线型图的代码中加上kind=‘bar’或者kind=‘barh’,可以生成柱状图或水平柱状图。

fig,axes = plt.subplots(2,1)
data = pd.Series(np.random.rand(10),index=list('abcdefghij'))
data.plot(kind='bar',ax=axes[0],rot=0,alpha=0.3)
data.plot(kind='barh',ax=axes[1],grid=True)
<matplotlib.axes._subplots.AxesSubplot at 0xfe39898>

图片

柱状图有一个非常实用的方法:

利用value_counts图形化显示Series或者DF中各值的出现频率。

比如df.value_counts().plot(kind=‘bar’)

Python可视化的基础语法就到这里,其他图形的绘制方法大同小异。

重点是遵循三个步骤的思路来进行思考、选择、应用。多多练习可以更加熟练。

读者福利:知道你可能对Python感兴趣,便准备了这套python学习资料
对于0基础小白入门:

如果你是零基础小白,想快速入门Python是可以考虑的。 一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:Python永久使用安装包Python web开发Python爬虫Python数据分析人工智能软件测试机器学习等学习教程。带你从零基础系统性的学好Python!

零基础Python学习资源介绍

👉Python学习路线汇总👈

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。(全套教程文末领取哈)
在这里插入图片描述

👉Python必备开发工具👈

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉Python学习视频600合集👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述

👉实战案例👈

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

👉100道Python练习题👈

检查学习结果。
在这里插入图片描述

👉面试刷题👈

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

资料领取

上述这份完整版的Python全套学习资料已经上传CSDN官方,朋友们如果需要可以微信扫描下方CSDN官方认证二维码输入“领取资料” 即可领取

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/342516.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

上海亚商投顾:沪指震荡上行 大消费板块全线走强

上海亚商投顾前言&#xff1a;无惧大盘涨跌&#xff0c;解密龙虎榜资金&#xff0c;跟踪一线游资和机构资金动向&#xff0c;识别短期热点和强势个股。市场情绪三大指数今日震荡反弹&#xff0c;沪指全天低开高走&#xff0c;深成指、创业板指均涨超1%。工程机械板块集体大涨&a…

nodejs学习笔记1.2

1、made \\ 中括号代表可选参数 、、、、 使用path模块处理路径拼接问题 、、、、 将/进行转义/ 、、、、 http模块 web服务器 、、、 创建最基本的web服务器 我表示醉了&#xff0c;之前都没有学到&#xff0c;难怪我学得糊里糊涂 req客户端 res…

00---C++入门

1. C关键字(C98) C总计63个关键字&#xff0c;C语言32个关键字 2. 命名空间 在C/C中&#xff0c;变量、函数和后面要学到的类都是大量存在的&#xff0c;这些变量、函数和类的名称将都存在于全局作用域中&#xff0c;可能会导致很多冲突。使用命名空间的目的是对标识符的名称进…

简单易用的以太网IO控制卡:C#读写测试

今天&#xff0c;正运动小助手给大家分享一下运动控制卡之ECIO系列IO卡的用法&#xff0c;C#语言进行ECI IO卡的开发以及测试多个IO读写的交互速度。 一、ECI0032/ECI0064 IO卡的硬件介绍 1.功能介绍 ECI0032/ECI0064等ECI0系列运动控制卡支持以太网、RS232通讯接口和电脑相…

A-Ops性能火焰图——适用于云原生的全栈持续性能监测工具

对于开发及运维人员来讲&#xff0c;火焰图是一个经典的定位性能问题的方法。利用火焰图可以可视化系统资源(cpu占用、内存占用、调度、IO等)的占用情况&#xff0c;从而帮助技术人员快速定位资源异常使用的代码级根因&#xff0c;或者观察潜在性能劣化趋势&#xff0c;进而优化…

2023最新简历模板免费下载

下面分享5个简历模板网站&#xff0c;免费下载&#xff0c;建议收藏&#xff01; 2023用最漂亮的简历模板&#xff0c;让面试官眼前一亮。 1、菜鸟图库 个人简历模板|WORD文档模板免费下载 - 菜鸟图库 菜鸟图库除了有超多设计类素材之外&#xff0c;还有很多办公类素材&#…

Multimap运用

Multimap概念:Multimap的特点其实就是可以包含有几个重复key的value值&#xff0c;你可以put进多个不同的value&#xff0c;但是key相同&#xff0c;但是又不是让后面的覆盖前面的内容.业务场景:当你需要构造像Map<K,List<V>> 或者Map(K,Set<V>)这样比较复杂…

MongoDB--》基本常用命令使用

目录 数据库操作命令 选择和创建数据库 数据库的删除 集合操作命令 集合的显示创建 集合的隐式创建 集合的删除 文档基本的CRUD&#xff08;增删改查&#xff09; 文档的插入 文档的基本查询 文档的更新 删除文档 数据库操作命令 数据库常用的操作命令如下&#x…

docker基础和使用(一)

Docker 入门篇 文章目录Docker 入门篇一、docker简介1.1、docker说明&#xff1a;1.2、docker镜像说明&#xff1a;1.2.1、UnionFS&#xff08;联合文件系统&#xff09;1.2.2、docker镜像分成的好处1.2.3、docker平台架构图二、docker的常用命令1.1、手册查询1.2、docker启停和…

知识图谱业务落地技术推荐之图数据库汇总

0.图数据库排名 链接:https://db-engines.com/en/ranking/graph+dbms 0.1简要分析(各种图数据库属性) Neo4j(主流) 历史悠久且

备考蓝桥杯【快速排序和归并排序】

&#x1f339;作者:云小逸 &#x1f4dd;个人主页:云小逸的主页 &#x1f4dd;Github:云小逸的Github &#x1f91f;motto:要敢于一个人默默的面对自己&#xff0c;强大自己才是核心。不要等到什么都没有了&#xff0c;才下定决心去做。种一颗树&#xff0c;最好的时间是十年前…

【王道数据结构】第八章 | 排序

目录 8.1. 排序的基本概念 8.2. 插入排序 8.2.1. 直接插入排序 8.2.2. 折半插入排序 8.2.3. 希尔排序 8.3. 交换排序 8.3.1. 冒泡排序 8.3.2. 快速排序 8.4. 选择排序 8.4.1. 简单选择排序 8.4.2. 堆排序 8.5. 归并排序和基数排序 8.5.2. 基数排序 8.1. 排序的基本概念 排…

3-track网络预测蛋白质结构和相互作用

目录引言网络架构发展直接生成蛋白-蛋白复合物DeepMind在最近的CASP14上展示了非常准确的预测。作者探索了融合相关思想的网络架构&#xff0c;并通过对一维序列级、二维距离图级&#xff08;distance map&#xff09;和三维坐标级&#xff08;coordinate&#xff09;的信息依次…

机械设备管理软件如何选择?机械设备管理软件哪家好?

随着信息化技术的进步与智能制造的发展趋势&#xff0c;很多机械设备制造企业也在一直探寻适合自己的数字化管理转型之路&#xff0c;而企业上ERP管理软件又是实现数字化管理的前提&#xff0c;机械设备管理软件对于企业来说就是关键一环。机械设备管理软件如何选择&#xff1f…

IPV4地址的原理和配置

第三章&#xff1a;IP地址的配置 IPv4&#xff08;Internet Protocol Version 4&#xff09;协议族是TCP/IP协议族中最为核心的协议族。它工作在TCP/IP协议栈的网络层&#xff0c;该层与OSI参考模型的网络层相对应。网络层提供了无连接数据传输服务&#xff0c;即网络在发送分…

【GD32F427开发板试用】7. 移植LVGL到GD32F427V

本篇文章来自极术社区与兆易创新组织的GD32F427开发板评测活动&#xff0c;更多开发板试用活动请关注极术社区网站。作者&#xff1a;hehung 之前发帖 【GD32F427开发板试用】1. 串口实现scanf输入控制LED 【GD32F427开发板试用】2. RT-Thread标准版移植 【GD32F427开发板试用…

TypeScript快速入门———(一)TypeScript 介绍以及初体验

文章目录1. TypeScript 介绍1.1 TypeScript 是什么1.2 TypeScript 为什么要为 JS 添加类型支持&#xff1f;1.3 TypeScript 相比 JS 的优势2. TypeScript 初体验2.1 安装编译 TS 的工具包2.2 编译并运行 TS 代码2.3 简化运行 TS 的步骤1. TypeScript 介绍 1.1 TypeScript 是什…

[python入门㊺] - 异常中的finally

目录 ❤ finally的作用 ❤ try、except、finally的执行顺序是什么 ❤ 案列 finally 中不带return finally中有return ❤ finally的作用 finally内的代码不管有无异常发生&#xff0c;都会执行。具体来说&#xff1a; 无论是否发生了异常&#xff0c;一定会执行 fi…

若依-pro使用

前言 最近开始搞一个项目&#xff0c;使用的框架是若依-pro。新手上路&#xff0c;多多指教。 首先了解一下什么是若依&#xff0c;其实他就是将很多项目共同的代码进行了抽取&#xff0c;方便我们可以快速开发的一个javaweb项目&#xff08;若依是一个项目&#xff0c;一个p…

中睿天下Coremail联合发布《2022年第四季度企业邮箱安全报告》(附下载)

近日&#xff0c;中睿天下联合CAC邮件安全大数据中心&#xff08;以下简称CAC中心&#xff09;发布《2022年第四季度企业邮箱安全报告》&#xff0c;对当前企业邮箱的应用状况和安全风险进行了分析。1.垃圾邮件同比下降22.16%日前&#xff0c;CAC&#xff08;Coremail Anti Spa…