经典网络模型系列——Swin-Transformer详细讲解与代码实现

news2024/12/28 11:07:49

经典网络模型系列——Swin-Transformer详细讲解与代码实现

  • 一、网路模型整体架构
  • 二、Patch Partition模块详解
  • 三、Patch Merging模块
  • 四、W-MSA详解
  • 五、SW-MSA详解
    • masked MSA详解
  • 六、 Relative Position Bias详解
  • 七、模型详细配置参数
  • 八、重要模块代码实现:
    • 1、Patch Partition代码模块:
    • 2、Patch Merging代码模块:
    • 3、mask掩码生成代码模块:
    • 4、stage堆叠部分代码:
    • 5、SW-MSA或者W-MSA模块代码:
  • 九:模型整体流程代码实现:

论文名称:Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
原论文地址: https://arxiv.org/abs/2103.14030
官方开源代码地址:https://github.com/microsoft/Swin-Transformer

一、网路模型整体架构

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

二、Patch Partition模块详解

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三、Patch Merging模块

在这里插入图片描述
在这里插入图片描述

四、W-MSA详解

在这里插入图片描述

在这里插入图片描述

五、SW-MSA详解

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

masked MSA详解

在这里插入图片描述

六、 Relative Position Bias详解

在这里插入图片描述
在这里插入图片描述

七、模型详细配置参数

在这里插入图片描述

八、重要模块代码实现:

1、Patch Partition代码模块:

class PatchEmbed(nn.Module):
    """
    2D Image to Patch Embedding
    split image into non-overlapping patches   即将图片划分成一个个没有重叠的patch
    """
    def __init__(self, patch_size=4, in_c=3, embed_dim=96, norm_layer=None):
        super().__init__()
        patch_size = (patch_size, patch_size)
        self.patch_size = patch_size
        self.in_chans = in_c
        self.embed_dim = embed_dim
        self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

    def forward(self, x):
        _, _, H, W = x.shape

        # padding
        # 如果输入图片的H,W不是patch_size的整数倍,需要进行padding
        pad_input = (H % self.patch_size[0] != 0) or (W % self.patch_size[1] != 0)
        if pad_input:
            # to pad the last 3 dimensions,
            # (W_left, W_right, H_top,H_bottom, C_front, C_back)
            x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1],   # 表示宽度方向右侧填充数
                          0, self.patch_size[0] - H % self.patch_size[0],   # 表示高度方向底部填充数
                          0, 0))

        # 下采样patch_size倍
        x = self.proj(x)
        _, _, H, W = x.shape
        # flatten: [B, C, H, W] -> [B, C, HW]
        # transpose: [B, C, HW] -> [B, HW, C]
        x = x.flatten(2).transpose(1, 2)
        x = self.norm(x)
        return x, H, W

2、Patch Merging代码模块:

class PatchMerging(nn.Module):
    r""" Patch Merging Layer.
        步长为2,间隔采样
    Args:
        dim (int): Number of input channels.
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, dim, norm_layer=nn.LayerNorm):
        super().__init__()
        self.dim = dim
        self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
        self.norm = norm_layer(4 * dim)

    def forward(self, x, H, W):
        """
        x: B, H*W, C    即输入x的通道排列顺序
        """
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"

        x = x.view(B, H, W, C)

        # padding
        # 如果输入feature map的H,W不是2的整数倍,需要进行padding
        pad_input = (H % 2 == 1) or (W % 2 == 1)
        if pad_input:
            # to pad the last 3 dimensions, starting from the last dimension and moving forward.
            # (C_front, C_back, W_left, W_right, H_top, H_bottom)
            # 注意这里的Tensor通道是[B, H, W, C],所以会和官方文档有些不同
            x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))

        # 以2为间隔进行采样
        x0 = x[:, 0::2, 0::2, :]  # [B, H/2, W/2, C]
        x1 = x[:, 1::2, 0::2, :]  # [B, H/2, W/2, C]
        x2 = x[:, 0::2, 1::2, :]  # [B, H/2, W/2, C]
        x3 = x[:, 1::2, 1::2, :]  # [B, H/2, W/2, C]
        x = torch.cat([x0, x1, x2, x3], -1)  #  ————————>  [B, H/2, W/2, 4*C]   在channael维度上进行拼接
        x = x.view(B, -1, 4 * C)  # [B, H/2*W/2, 4*C]

        x = self.norm(x)
        x = self.reduction(x)  # [B, H/2*W/2, 2*C]

        return x

3、mask掩码生成代码模块:

    def create_mask(self, x, H, W):
        # calculate attention mask for SW-MSA
        # 保证Hp和Wp是window_size的整数倍
        Hp = int(np.ceil(H / self.window_size)) * self.window_size
        Wp = int(np.ceil(W / self.window_size)) * self.window_size
        # 拥有和feature map一样的通道排列顺序,方便后续window_partition
        img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device)  # [1, Hp, Wp, 1]
        h_slices = (slice(0, -self.window_size),
                    slice(-self.window_size, -self.shift_size),
                    slice(-self.shift_size, None))
        w_slices = (slice(0, -self.window_size),
                    slice(-self.window_size, -self.shift_size),
                    slice(-self.shift_size, None))
        cnt = 0
        for h in h_slices:
            for w in w_slices:
                img_mask[:, h, w, :] = cnt
                cnt += 1

        # 将img_mask划分成一个一个窗口
        mask_windows = window_partition(img_mask, self.window_size)  # [nW, Mh, Mw, 1]           # 输出的是按照指定的window_size划分成一个一个窗口的数据
        mask_windows = mask_windows.view(-1, self.window_size * self.window_size)  # [nW, Mh*Mw]
        attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)  # [nW, 1, Mh*Mw] - [nW, Mh*Mw, 1]  使用了广播机制
        # [nW, Mh*Mw, Mh*Mw]
        # 因为需要求得的是自身注意力机制,所以,所以相同的区域使用0表示,;不同的区域不等于0,填入-100,这样,在求得
        attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))   # 即对于不等于0的位置,赋值为-100;否则为0
        return attn_mask

4、stage堆叠部分代码:

class BasicLayer(nn.Module):
    """
    A basic Swin Transformer layer for one stage.

    Args:
        dim (int): Number of input channels.
        depth (int): Number of blocks.
        num_heads (int): Number of attention heads.
        window_size (int): Local window size.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
        norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
        downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
    """

    def __init__(self, dim, depth, num_heads, window_size,
                 mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0.,
                 drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):
        super().__init__()
        self.dim = dim
        self.depth = depth
        self.window_size = window_size
        self.use_checkpoint = use_checkpoint
        self.shift_size = window_size // 2  # 表示向右和向下偏移的窗口大小   即窗口大小除以2,然后向下取整

        # build blocks
        self.blocks = nn.ModuleList([
            SwinTransformerBlock(
                dim=dim,
                num_heads=num_heads,
                window_size=window_size,
                shift_size=0 if (i % 2 == 0) else self.shift_size,   # 通过判断shift_size是否等于0,来决定是使用W-MSA与SW-MSA
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                drop=drop,
                attn_drop=attn_drop,
                drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                norm_layer=norm_layer)
            for i in range(depth)])

        # patch merging layer    即:PatchMerging类
        if downsample is not None:
            self.downsample = downsample(dim=dim, norm_layer=norm_layer)
        else:
            self.downsample = None

    def create_mask(self, x, H, W):
        # calculate attention mask for SW-MSA
        # 保证Hp和Wp是window_size的整数倍
        Hp = int(np.ceil(H / self.window_size)) * self.window_size
        Wp = int(np.ceil(W / self.window_size)) * self.window_size
        # 拥有和feature map一样的通道排列顺序,方便后续window_partition
        img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device)  # [1, Hp, Wp, 1]
        h_slices = (slice(0, -self.window_size),
                    slice(-self.window_size, -self.shift_size),
                    slice(-self.shift_size, None))
        w_slices = (slice(0, -self.window_size),
                    slice(-self.window_size, -self.shift_size),
                    slice(-self.shift_size, None))
        cnt = 0
        for h in h_slices:
            for w in w_slices:
                img_mask[:, h, w, :] = cnt
                cnt += 1

        # 将img_mask划分成一个一个窗口
        mask_windows = window_partition(img_mask, self.window_size)  # [nW, Mh, Mw, 1]           # 输出的是按照指定的window_size划分成一个一个窗口的数据
        mask_windows = mask_windows.view(-1, self.window_size * self.window_size)  # [nW, Mh*Mw]
        attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)  # [nW, 1, Mh*Mw] - [nW, Mh*Mw, 1]  使用了广播机制
        # [nW, Mh*Mw, Mh*Mw]
        # 因为需要求得的是自身注意力机制,所以,所以相同的区域使用0表示,;不同的区域不等于0,填入-100,这样,在求得
        attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))   # 即对于不等于0的位置,赋值为-100;否则为0
        return attn_mask

    def forward(self, x, H, W):
        attn_mask = self.create_mask(x, H, W)  # [nW, Mh*Mw, Mh*Mw]   # 制作mask蒙版
        for blk in self.blocks:
            blk.H, blk.W = H, W
            if not torch.jit.is_scripting() and self.use_checkpoint:
                x = checkpoint.checkpoint(blk, x, attn_mask)
            else:
                x = blk(x, attn_mask)
        if self.downsample is not None:
            x = self.downsample(x, H, W)
            H, W = (H + 1) // 2, (W + 1) // 2

        return x, H, W


5、SW-MSA或者W-MSA模块代码:

class SwinTransformerBlock(nn.Module):
    r""" Swin Transformer Block.

    Args:
        dim (int): Number of input channels.
        num_heads (int): Number of attention heads.
        window_size (int): Window size.
        shift_size (int): Shift size for SW-MSA.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float, optional): Stochastic depth rate. Default: 0.0
        act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, dim, num_heads, window_size=7, shift_size=0,
                 mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,
                 act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.window_size = window_size
        self.shift_size = shift_size
        self.mlp_ratio = mlp_ratio
        assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"

        self.norm1 = norm_layer(dim)    # 先经过层归一化处理

        # WindowAttention即为:SW-MSA或者W-MSA模块
        self.attn = WindowAttention(
            dim, window_size=(self.window_size, self.window_size), num_heads=num_heads, qkv_bias=qkv_bias,
            attn_drop=attn_drop, proj_drop=drop)

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def forward(self, x, attn_mask):
        H, W = self.H, self.W
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"

        shortcut = x
        x = self.norm1(x)
        x = x.view(B, H, W, C)

        # pad feature maps to multiples of window size
        # 把feature map给pad到window size的整数倍
        pad_l = pad_t = 0
        pad_r = (self.window_size - W % self.window_size) % self.window_size
        pad_b = (self.window_size - H % self.window_size) % self.window_size
        x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
        _, Hp, Wp, _ = x.shape

        # cyclic shift
        # 判断是进行SW-MSA或者是W-MSA模块
        if self.shift_size > 0:
            # https://blog.csdn.net/ooooocj/article/details/126046858?ops_request_misc=&request_id=&biz_id=102&utm_term=torch.roll()%E7%94%A8%E6%B3%95&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduweb~default-0-126046858.142^v73^control,201^v4^add_ask,239^v1^control&spm=1018.2226.3001.4187
            shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))    #进行数据移动操作
        else:
            shifted_x = x
            attn_mask = None

        # partition windows
        # 将窗口按照window_size的大小进行划分,得到一个个窗口
        x_windows = window_partition(shifted_x, self.window_size)  # [nW*B, Mh, Mw, C]
        # 将数据进行展平操作
        x_windows = x_windows.view(-1, self.window_size * self.window_size, C)  # [nW*B, Mh*Mw, C]

        # W-MSA/SW-MSA
        """
            # 进行多头自注意力机制操作
        """
        attn_windows = self.attn(x_windows, mask=attn_mask)  # [nW*B, Mh*Mw, C]

        # merge windows
        attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)  # [nW*B, Mh, Mw, C]
        # 将多窗口拼接回大的featureMap
        shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp)  # [B, H', W', C]

        # reverse cyclic shift
        # 将移位的数据进行还原
        if self.shift_size > 0:
            x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
        else:
            x = shifted_x
        # 如果进行了padding操作,需要移出掉相应的pad
        if pad_r > 0 or pad_b > 0:
            # 把前面pad的数据移除掉
            x = x[:, :H, :W, :].contiguous()

        x = x.view(B, H * W, C)

        # FFN
        x = shortcut + self.drop_path(x)
        x = x + self.drop_path(self.mlp(self.norm2(x)))

        return x

九:模型整体流程代码实现:

""" Swin Transformer
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows`
    - https://arxiv.org/pdf/2103.14030

Code/weights from https://github.com/microsoft/Swin-Transformer

"""

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
import numpy as np
from typing import Optional


def drop_path_f(x, drop_prob: float = 0., training: bool = False):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).

    This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
    changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
    'survival rate' as the argument.

    """
    if drop_prob == 0. or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
    random_tensor.floor_()  # binarize
    output = x.div(keep_prob) * random_tensor
    return output


class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """
    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path_f(x, self.drop_prob, self.training)

"""
    将窗口按照window_size的大小进行划分,得到一个个窗口
"""
def window_partition(x, window_size: int):
    """
    将feature map按照window_size划分成一个个没有重叠的window
    Args:
        x: (B, H, W, C)
        window_size (int): window size(M)

    Returns:
        windows: (num_windows*B, window_size, window_size, C)
    """
    B, H, W, C = x.shape
    x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
    # permute: [B, H//Mh, Mh, W//Mw, Mw, C] -> [B, H//Mh, W//Mh, Mw, Mw, C]
    # view: [B, H//Mh, W//Mw, Mh, Mw, C] -> [B*num_windows, Mh, Mw, C]
    windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)   # 输出的是按照指定的window_size划分成一个一个窗口的数据
    return windows


def window_reverse(windows, window_size: int, H: int, W: int):
    """
    将一个个window还原成一个feature map
    Args:
        windows: (num_windows*B, window_size, window_size, C)
        window_size (int): Window size(M)
        H (int): Height of image
        W (int): Width of image

    Returns:
        x: (B, H, W, C)
    """
    B = int(windows.shape[0] / (H * W / window_size / window_size))
    # view: [B*num_windows, Mh, Mw, C] -> [B, H//Mh, W//Mw, Mh, Mw, C]
    x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
    # permute: [B, H//Mh, W//Mw, Mh, Mw, C] -> [B, H//Mh, Mh, W//Mw, Mw, C]
    # view: [B, H//Mh, Mh, W//Mw, Mw, C] -> [B, H, W, C]
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
    return x


class PatchEmbed(nn.Module):
    """
    2D Image to Patch Embedding
    split image into non-overlapping patches   即将图片划分成一个个没有重叠的patch
    """
    def __init__(self, patch_size=4, in_c=3, embed_dim=96, norm_layer=None):
        super().__init__()
        patch_size = (patch_size, patch_size)
        self.patch_size = patch_size
        self.in_chans = in_c
        self.embed_dim = embed_dim
        self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

    def forward(self, x):
        _, _, H, W = x.shape

        # padding
        # 如果输入图片的H,W不是patch_size的整数倍,需要进行padding
        pad_input = (H % self.patch_size[0] != 0) or (W % self.patch_size[1] != 0)
        if pad_input:
            # to pad the last 3 dimensions,
            # (W_left, W_right, H_top,H_bottom, C_front, C_back)
            x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1],   # 表示宽度方向右侧填充数
                          0, self.patch_size[0] - H % self.patch_size[0],   # 表示高度方向底部填充数
                          0, 0))

        # 下采样patch_size倍
        x = self.proj(x)
        _, _, H, W = x.shape
        # flatten: [B, C, H, W] -> [B, C, HW]
        # transpose: [B, C, HW] -> [B, HW, C]
        x = x.flatten(2).transpose(1, 2)
        x = self.norm(x)
        return x, H, W


class PatchMerging(nn.Module):
    r""" Patch Merging Layer.
        步长为2,间隔采样
    Args:
        dim (int): Number of input channels.
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, dim, norm_layer=nn.LayerNorm):
        super().__init__()
        self.dim = dim
        self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
        self.norm = norm_layer(4 * dim)

    def forward(self, x, H, W):
        """
        x: B, H*W, C    即输入x的通道排列顺序
        """
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"

        x = x.view(B, H, W, C)

        # padding
        # 如果输入feature map的H,W不是2的整数倍,需要进行padding
        pad_input = (H % 2 == 1) or (W % 2 == 1)
        if pad_input:
            # to pad the last 3 dimensions, starting from the last dimension and moving forward.
            # (C_front, C_back, W_left, W_right, H_top, H_bottom)
            # 注意这里的Tensor通道是[B, H, W, C],所以会和官方文档有些不同
            x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))

        # 以2为间隔进行采样
        x0 = x[:, 0::2, 0::2, :]  # [B, H/2, W/2, C]
        x1 = x[:, 1::2, 0::2, :]  # [B, H/2, W/2, C]
        x2 = x[:, 0::2, 1::2, :]  # [B, H/2, W/2, C]
        x3 = x[:, 1::2, 1::2, :]  # [B, H/2, W/2, C]
        x = torch.cat([x0, x1, x2, x3], -1)  #  ————————>  [B, H/2, W/2, 4*C]   在channael维度上进行拼接
        x = x.view(B, -1, 4 * C)  # [B, H/2*W/2, 4*C]

        x = self.norm(x)
        x = self.reduction(x)  # [B, H/2*W/2, 2*C]

        return x

"""
MLP模块
"""
class Mlp(nn.Module):
    """ MLP as used in Vision Transformer, MLP-Mixer and related networks
    """
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features

        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.drop1 = nn.Dropout(drop)
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop2 = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop1(x)
        x = self.fc2(x)
        x = self.drop2(x)
        return x

"""
WindowAttention即为:SW-MSA或者W-MSA模块
"""
class WindowAttention(nn.Module):
    r""" Window based multi-head self attention (W-MSA) module with relative position bias.
    It supports both of shifted and non-shifted window.

    Args:
        dim (int): Number of input channels.
        window_size (tuple[int]): The height and width of the window.
        num_heads (int): Number of attention heads.
        qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True
        attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
        proj_drop (float, optional): Dropout ratio of output. Default: 0.0
    """

    def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.):

        super().__init__()
        self.dim = dim
        self.window_size = window_size  # [Mh, Mw]
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5

        # define a parameter table of relative position bias
        # 创建偏置bias项矩阵
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads))  # [2*Mh-1 * 2*Mw-1, nH]    其元素的个数===>>[(2*Mh-1) * (2*Mw-1)]

        # get pair-wise relative position index for each token inside the window
        coords_h = torch.arange(self.window_size[0])  # 如果此处的self.window_size[0]2的话,则生成的coords_h为[0,1]
        coords_w = torch.arange(self.window_size[1])  # 同理得
        coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # [2, Mh, Mw]
        coords_flatten = torch.flatten(coords, 1)  # [2, Mh*Mw]
        # [2, Mh*Mw, 1] - [2, 1, Mh*Mw]
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # [2, Mh*Mw, Mh*Mw]
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # [Mh*Mw, Mh*Mw, 2]
        relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0  行标+(M-1)
        relative_coords[:, :, 1] += self.window_size[1] - 1     # 列表标+(M-1)
        relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
        relative_position_index = relative_coords.sum(-1)  # [Mh*Mw, Mh*Mw]
        self.register_buffer("relative_position_index", relative_position_index)   # 将relative_position_index放入到模型的缓存当中

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        nn.init.trunc_normal_(self.relative_position_bias_table, std=.02)
        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x, mask: Optional[torch.Tensor] = None):
        """
        Args:
            x: input features with shape of (num_windows*B, Mh*Mw, C)
            mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
        """
        # [batch_size*num_windows, Mh*Mw, total_embed_dim]
        B_, N, C = x.shape
        # qkv(): -> [batch_size*num_windows, Mh*Mw, 3 * total_embed_dim]
        # reshape: -> [batch_size*num_windows, Mh*Mw, 3, num_heads, embed_dim_per_head]
        # permute: -> [3, batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]
        qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        # [batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]
        q, k, v = qkv.unbind(0)  # make torchscript happy (cannot use tensor as tuple)

        # transpose: -> [batch_size*num_windows, num_heads, embed_dim_per_head, Mh*Mw]
        # @: multiply -> [batch_size*num_windows, num_heads, Mh*Mw, Mh*Mw]
        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))

        # relative_position_bias_table.view: [Mh*Mw*Mh*Mw,nH] -> [Mh*Mw,Mh*Mw,nH]
        relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
            self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)
        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # [nH, Mh*Mw, Mh*Mw]
        attn = attn + relative_position_bias.unsqueeze(0)

        # 进行mask,相同区域使用0表示;不同区域使用-100表示
        if mask is not None:
            # mask: [nW, Mh*Mw, Mh*Mw]
            nW = mask.shape[0]  # num_windows
            # attn.view: [batch_size, num_windows, num_heads, Mh*Mw, Mh*Mw]
            # mask.unsqueeze: [1, nW, 1, Mh*Mw, Mh*Mw]
            attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
            attn = attn.view(-1, self.num_heads, N, N)
            attn = self.softmax(attn)
        else:
            attn = self.softmax(attn)

        attn = self.attn_drop(attn)

        # @: multiply -> [batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]
        # transpose: -> [batch_size*num_windows, Mh*Mw, num_heads, embed_dim_per_head]
        # reshape: -> [batch_size*num_windows, Mh*Mw, total_embed_dim]
        x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

"""
    SwinTransformerBlock
"""
class SwinTransformerBlock(nn.Module):
    r""" Swin Transformer Block.

    Args:
        dim (int): Number of input channels.
        num_heads (int): Number of attention heads.
        window_size (int): Window size.
        shift_size (int): Shift size for SW-MSA.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float, optional): Stochastic depth rate. Default: 0.0
        act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, dim, num_heads, window_size=7, shift_size=0,
                 mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,
                 act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.window_size = window_size
        self.shift_size = shift_size
        self.mlp_ratio = mlp_ratio
        assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"

        self.norm1 = norm_layer(dim)    # 先经过层归一化处理

        # WindowAttention即为:SW-MSA或者W-MSA模块
        self.attn = WindowAttention(
            dim, window_size=(self.window_size, self.window_size), num_heads=num_heads, qkv_bias=qkv_bias,
            attn_drop=attn_drop, proj_drop=drop)

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def forward(self, x, attn_mask):
        H, W = self.H, self.W
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"

        shortcut = x
        x = self.norm1(x)
        x = x.view(B, H, W, C)

        # pad feature maps to multiples of window size
        # 把feature map给pad到window size的整数倍
        pad_l = pad_t = 0
        pad_r = (self.window_size - W % self.window_size) % self.window_size
        pad_b = (self.window_size - H % self.window_size) % self.window_size
        x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
        _, Hp, Wp, _ = x.shape

        # cyclic shift
        # 判断是进行SW-MSA或者是W-MSA模块
        if self.shift_size > 0:
            # https://blog.csdn.net/ooooocj/article/details/126046858?ops_request_misc=&request_id=&biz_id=102&utm_term=torch.roll()%E7%94%A8%E6%B3%95&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduweb~default-0-126046858.142^v73^control,201^v4^add_ask,239^v1^control&spm=1018.2226.3001.4187
            shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))    #进行数据移动操作
        else:
            shifted_x = x
            attn_mask = None

        # partition windows
        # 将窗口按照window_size的大小进行划分,得到一个个窗口
        x_windows = window_partition(shifted_x, self.window_size)  # [nW*B, Mh, Mw, C]
        # 将数据进行展平操作
        x_windows = x_windows.view(-1, self.window_size * self.window_size, C)  # [nW*B, Mh*Mw, C]

        # W-MSA/SW-MSA
        """
            # 进行多头自注意力机制操作
        """
        attn_windows = self.attn(x_windows, mask=attn_mask)  # [nW*B, Mh*Mw, C]

        # merge windows
        attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)  # [nW*B, Mh, Mw, C]
        # 将多窗口拼接回大的featureMap
        shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp)  # [B, H', W', C]

        # reverse cyclic shift
        # 将移位的数据进行还原
        if self.shift_size > 0:
            x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
        else:
            x = shifted_x
        # 如果进行了padding操作,需要移出掉相应的pad
        if pad_r > 0 or pad_b > 0:
            # 把前面pad的数据移除掉
            x = x[:, :H, :W, :].contiguous()

        x = x.view(B, H * W, C)

        # FFN
        x = shortcut + self.drop_path(x)
        x = x + self.drop_path(self.mlp(self.norm2(x)))

        return x


class BasicLayer(nn.Module):
    """
    A basic Swin Transformer layer for one stage.

    Args:
        dim (int): Number of input channels.
        depth (int): Number of blocks.
        num_heads (int): Number of attention heads.
        window_size (int): Local window size.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
        norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
        downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
    """

    def __init__(self, dim, depth, num_heads, window_size,
                 mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0.,
                 drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):
        super().__init__()
        self.dim = dim
        self.depth = depth
        self.window_size = window_size
        self.use_checkpoint = use_checkpoint
        self.shift_size = window_size // 2  # 表示向右和向下偏移的窗口大小   即窗口大小除以2,然后向下取整

        # build blocks
        self.blocks = nn.ModuleList([
            SwinTransformerBlock(
                dim=dim,
                num_heads=num_heads,
                window_size=window_size,
                shift_size=0 if (i % 2 == 0) else self.shift_size,   # 通过判断shift_size是否等于0,来决定是使用W-MSA与SW-MSA
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                drop=drop,
                attn_drop=attn_drop,
                drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                norm_layer=norm_layer)
            for i in range(depth)])

        # patch merging layer    即:PatchMerging类
        if downsample is not None:
            self.downsample = downsample(dim=dim, norm_layer=norm_layer)
        else:
            self.downsample = None

    def create_mask(self, x, H, W):
        # calculate attention mask for SW-MSA
        # 保证Hp和Wp是window_size的整数倍
        Hp = int(np.ceil(H / self.window_size)) * self.window_size
        Wp = int(np.ceil(W / self.window_size)) * self.window_size
        # 拥有和feature map一样的通道排列顺序,方便后续window_partition
        img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device)  # [1, Hp, Wp, 1]
        h_slices = (slice(0, -self.window_size),
                    slice(-self.window_size, -self.shift_size),
                    slice(-self.shift_size, None))
        w_slices = (slice(0, -self.window_size),
                    slice(-self.window_size, -self.shift_size),
                    slice(-self.shift_size, None))
        cnt = 0
        for h in h_slices:
            for w in w_slices:
                img_mask[:, h, w, :] = cnt
                cnt += 1

        # 将img_mask划分成一个一个窗口
        mask_windows = window_partition(img_mask, self.window_size)  # [nW, Mh, Mw, 1]           # 输出的是按照指定的window_size划分成一个一个窗口的数据
        mask_windows = mask_windows.view(-1, self.window_size * self.window_size)  # [nW, Mh*Mw]
        attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)  # [nW, 1, Mh*Mw] - [nW, Mh*Mw, 1]  使用了广播机制
        # [nW, Mh*Mw, Mh*Mw]
        # 因为需要求得的是自身注意力机制,所以,所以相同的区域使用0表示,;不同的区域不等于0,填入-100,这样,在求得
        attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))   # 即对于不等于0的位置,赋值为-100;否则为0
        return attn_mask

    def forward(self, x, H, W):
        attn_mask = self.create_mask(x, H, W)  # [nW, Mh*Mw, Mh*Mw]   # 制作mask蒙版
        for blk in self.blocks:
            blk.H, blk.W = H, W
            if not torch.jit.is_scripting() and self.use_checkpoint:
                x = checkpoint.checkpoint(blk, x, attn_mask)
            else:
                x = blk(x, attn_mask)
        if self.downsample is not None:
            x = self.downsample(x, H, W)
            H, W = (H + 1) // 2, (W + 1) // 2

        return x, H, W


class SwinTransformer(nn.Module):
    r""" Swin Transformer
        A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows`  -
          https://arxiv.org/pdf/2103.14030

    Args:
        patch_size (int | tuple(int)): Patch size. Default: 4   表示通过Patch Partition层后,下采样几倍
        in_chans (int): Number of input image channels. Default: 3
        num_classes (int): Number of classes for classification head. Default: 1000
        embed_dim (int): Patch embedding dimension. Default: 96
        depths (tuple(int)): Depth of each Swin Transformer layer.
        num_heads (tuple(int)): Number of attention heads in different layers.
        window_size (int): Window size. Default: 7
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
        qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
        drop_rate (float): Dropout rate. Default: 0
        attn_drop_rate (float): Attention dropout rate. Default: 0
        drop_path_rate (float): Stochastic depth rate. Default: 0.1
        norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
        patch_norm (bool): If True, add normalization after patch embedding. Default: True
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
    """

    def __init__(self, patch_size=4,  # 表示通过Patch Partition层后,下采样几倍
                 in_chans=3,           # 输入图像通道
                 num_classes=1000,     # 类别数
                 embed_dim=96,         # Patch partition层后的LinearEmbedding层映射后的维度,之后的几层都是该数的整数倍  分别是 C、2C、4C、8C
                 depths=(2, 2, 6, 2),  # 表示每一个Stage模块内,Swin Transformer Block重复的次数
                 num_heads=(3, 6, 12, 24),  # 表示每一个Stage模块内,Swin Transformer Block中采用的Multi-Head self-Attention的head的个数
                 window_size=7,         # 表示W-MSA与SW-MSA所采用的window的大小
                 mlp_ratio=4.,          # 表示MLP模块中,第一个全连接层增大的倍数
                 qkv_bias=True,
                 drop_rate=0.,          # 对应的PatchEmbed层后面的
                 attn_drop_rate=0.,     # 对应于Multi-Head self-Attention模块中对应的dropRate
                 drop_path_rate=0.1,    # 对应于每一个Swin-Transformer模块中采用的DropRate   其是慢慢的递增的,从0增长到drop_path_rate
                 norm_layer=nn.LayerNorm,
                 patch_norm=True,
                 use_checkpoint=False, **kwargs):
        super().__init__()

        self.num_classes = num_classes
        self.num_layers = len(depths)  # depths:表示重复的Swin Transoformer Block模块的次数  表示每一个Stage模块内,Swin Transformer Block重复的次数
        self.embed_dim = embed_dim
        self.patch_norm = patch_norm
        # stage4输出特征矩阵的channels
        self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
        self.mlp_ratio = mlp_ratio

        # split image into non-overlapping patches   即将图片划分成一个个没有重叠的patch
        self.patch_embed = PatchEmbed(
            patch_size=patch_size, in_c=in_chans, embed_dim=embed_dim,
            norm_layer=norm_layer if self.patch_norm else None)
        self.pos_drop = nn.Dropout(p=drop_rate)   # PatchEmbed层后面的Dropout层

        # stochastic depth
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule

        # build layers
        self.layers = nn.ModuleList()
        for i_layer in range(self.num_layers):
            # 注意这里构建的stage和论文图中有些差异
            # 这里的stage不包含该stage的patch_merging层,包含的是下个stage的
            layers = BasicLayer(dim=int(embed_dim * 2 ** i_layer),  # 传入特征矩阵的维度,即channel方向的深度
                                depth=depths[i_layer],              # 表示当前stage中需要堆叠的多少Swin Transformer Block
                                num_heads=num_heads[i_layer],       # 表示每一个Stage模块内,Swin Transformer Block中采用的Multi-Head self-Attention的head的个数
                                window_size=window_size,            # 表示W-MSA与SW-MSA所采用的window的大小
                                mlp_ratio=self.mlp_ratio,           # 表示MLP模块中,第一个全连接层增大的倍数
                                qkv_bias=qkv_bias,
                                drop=drop_rate,                     # 对应的PatchEmbed层后面的
                                attn_drop=attn_drop_rate,           # 对应于Multi-Head self-Attention模块中对应的dropRate
                                drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],     # 对应于每一个Swin-Transformer模块中采用的DropRate   其是慢慢的递增的,从0增长到drop_path_rate
                                norm_layer=norm_layer,
                                downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,   # 判断是否是第四个,因为第四个Stage是没有PatchMerging层的
                                use_checkpoint=use_checkpoint)
            self.layers.append(layers)

        self.norm = norm_layer(self.num_features)
        self.avgpool = nn.AdaptiveAvgPool1d(1)   # 自适应的全局平均池化
        self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            nn.init.trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def forward(self, x):
        # x: [B, L, C]
        x, H, W = self.patch_embed(x)  # 对图像下采样4倍
        x = self.pos_drop(x)

        # 依次传入各个stage中
        for layer in self.layers:
            x, H, W = layer(x, H, W)

        x = self.norm(x)  # [B, L, C]
        x = self.avgpool(x.transpose(1, 2))  # [B, C, 1]
        x = torch.flatten(x, 1)
        x = self.head(x)   # 经过全连接层,得到输出
        return x


def swin_tiny_patch4_window7_224(num_classes: int = 1000, **kwargs):
    # trained ImageNet-1K
    # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth
    model = SwinTransformer(in_chans=3,
                            patch_size=4,
                            window_size=7,
                            embed_dim=96,
                            depths=(2, 2, 6, 2),
                            num_heads=(3, 6, 12, 24),
                            num_classes=num_classes,
                            **kwargs)
    return model


def swin_small_patch4_window7_224(num_classes: int = 1000, **kwargs):
    # trained ImageNet-1K
    # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_small_patch4_window7_224.pth
    model = SwinTransformer(in_chans=3,
                            patch_size=4,
                            window_size=7,
                            embed_dim=96,
                            depths=(2, 2, 18, 2),
                            num_heads=(3, 6, 12, 24),
                            num_classes=num_classes,
                            **kwargs)
    return model


def swin_base_patch4_window7_224(num_classes: int = 1000, **kwargs):
    # trained ImageNet-1K
    # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224.pth
    model = SwinTransformer(in_chans=3,
                            patch_size=4,
                            window_size=7,
                            embed_dim=128,
                            depths=(2, 2, 18, 2),
                            num_heads=(4, 8, 16, 32),
                            num_classes=num_classes,
                            **kwargs)
    return model


def swin_base_patch4_window12_384(num_classes: int = 1000, **kwargs):
    # trained ImageNet-1K
    # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384.pth
    model = SwinTransformer(in_chans=3,
                            patch_size=4,
                            window_size=12,
                            embed_dim=128,
                            depths=(2, 2, 18, 2),
                            num_heads=(4, 8, 16, 32),
                            num_classes=num_classes,
                            **kwargs)
    return model


def swin_base_patch4_window7_224_in22k(num_classes: int = 21841, **kwargs):
    # trained ImageNet-22K
    # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22k.pth
    model = SwinTransformer(in_chans=3,
                            patch_size=4,
                            window_size=7,
                            embed_dim=128,
                            depths=(2, 2, 18, 2),
                            num_heads=(4, 8, 16, 32),
                            num_classes=num_classes,
                            **kwargs)
    return model


def swin_base_patch4_window12_384_in22k(num_classes: int = 21841, **kwargs):
    # trained ImageNet-22K
    # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384_22k.pth
    model = SwinTransformer(in_chans=3,
                            patch_size=4,
                            window_size=12,
                            embed_dim=128,
                            depths=(2, 2, 18, 2),
                            num_heads=(4, 8, 16, 32),
                            num_classes=num_classes,
                            **kwargs)
    return model


def swin_large_patch4_window7_224_in22k(num_classes: int = 21841, **kwargs):
    # trained ImageNet-22K
    # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window7_224_22k.pth
    model = SwinTransformer(in_chans=3,
                            patch_size=4,
                            window_size=7,
                            embed_dim=192,
                            depths=(2, 2, 18, 2),
                            num_heads=(6, 12, 24, 48),
                            num_classes=num_classes,
                            **kwargs)
    return model


def swin_large_patch4_window12_384_in22k(num_classes: int = 21841, **kwargs):
    # trained ImageNet-22K
    # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22k.pth
    model = SwinTransformer(in_chans=3,
                            patch_size=4,
                            window_size=12,
                            embed_dim=192,
                            depths=(2, 2, 18, 2),
                            num_heads=(6, 12, 24, 48),
                            num_classes=num_classes,
                            **kwargs)
    return model

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/337029.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Android开发【金三银四】之OKhttp网络通讯socket

一、SOCKS代理 全能代理&#xff0c;就像有很多跳线的转接板&#xff0c;它只是简单地将一端的系统连接到另外一端。支持多种协议&#xff0c;包括http、ftp请求及其它类型的请求。它分socks 4 和socks 5两种类型&#xff0c;socks 4只支持TCP协议而socks 5支持TCP/UDP协议&am…

Java后端开发功能模块思路

文章目录前言一、查找接口及参数信息1.1 找访问路径1.2 参数及返回结果信息1.3 编写功能模块函数二、代码设计思路三、总结前言 对于正在学习Java后端开发的同学来说&#xff0c;对于Java后端功能模块的开发过程及思路要有一个整体清晰的流程。才能保证在开发过程中更加的顺畅…

哪些数据可以用在二手车买卖中?

近期&#xff0c;商务部副部长盛秋平表示&#xff0c;将着力稳定和扩大汽车消费&#xff0c;支持新能源汽车购买使用&#xff0c;扩大二手车流通。还将打通二手车信息平台&#xff0c;推广上海的汽车全生命周期信息平台和中国汽车流通协会有关经验做法&#xff0c;建设全国性的…

Python-项目实战--飞机大战-游戏背景(5)

目标背景交替滚动的思路确定显示游戏背景1.背景交替滚动的思路确定游戏启动后&#xff0c;背景图像会连续不断地向下方移动在视觉上产生英雄的飞机不断向上方飞行的错觉 -- 在很多跑酷类游戏中常用的套路游戏的背景不断变化游戏的主角位置保持不变1.1实现思路分析解决办法创建两…

计算机视觉框架OpenMMLab开源学习(三):图像分类实战

前言&#xff1a;本篇主要偏向图像分类实战部分&#xff0c;使用MMclassification工具进行代码应用&#xff0c;最后对水果分类进行实战演示&#xff0c;本次环境和代码配置部分省略&#xff0c;具体内容建议参考前一篇文章&#xff1a;计算机视觉框架OpenMMLab开源学习&#x…

计算机网络整理-问答

1. 程序工作的时候网络各层的状态 如下图所示&#xff1a; 1. TCP 在进行三次握手的时候&#xff0c;IP 层和 MAC 层对应都有什么操作呢&#xff1f; TCP 三次握手是通过在传输层建立连接的一个过程&#xff0c;在这个过程中&#xff0c;TCP 和 IP 层、MAC 层都起到了重要的…

ChatGPT API 本地如何调用

本文将会介绍&#xff0c;如何找到API文档和相应语言SDK&#xff0c;并使用PHP调用SDK实现本地请求API的完成过程及遇到的问题和解决方法。 API文档 1.打开官网 ChatGPT: Optimizing Language Models for Dialogue 2.找到API 3.查看文档 4.找到sdk库 OpenAI API 5.主流语言 …

2023年软考什么时候考试?

2023年软考各科目考试时间安排已确定&#xff01;中国计算机技术职业资格网发布了《2023年度计算机技术与软件专业技术资格&#xff08;水平&#xff09;考试工作计划》&#xff0c;具体见下文。2023年度计算机软件资格考试&#xff08;初级、中级、高级&#xff09;上半年考试…

树莓派4b Raspberry Pi 4安装以前内置Python3.7版本的系统出现的一系列问题记录

今天想要重装树莓派系统&#xff0c;想装那种内置Python3.7版本的系统&#xff0c;从网上找到镜像源后烧录进去出现一系列问题&#xff1a; 烧录系统开机后&#xff0c;首先就出现报错&#xff1a; 上面显示一个问题就是&#xff1a;start4x.elf: is not compatible&#xff0…

Django自定义模板标签的使用详解

目录 1.创建子应用&#xff1a;python manage.py startapp test01 2.进行相关的配置 3.在新建的test01文件下创建urls.py(此处名称可变但注意上图) 4.在test01文件下创建名称为templatetags的文件夹 5.templatetags文件下继续创建几个py文件如下图​编辑 6.views视图函数…

走进独自开,带你轻松干副业

今天给大家分享一个开发者的福利平台——独自开&#xff08;点击直接注册&#xff09;&#xff0c;让你在家就能解决收入问题。 文章目录一、平台介绍二、系统案例三、获取收益四、使用平台1、用户注册2、用户认证3、任务报价五、文末总结一、平台介绍 简单说明 独自开信息科技…

人工智能的未来———因果推理what if 第11章(统计模型) 文章解读

我们在观察数据当中,一般使用样本均值去估计目标人群的均值 在所有情况都是理想的情况下: 平均因果效应

Linux环境运行Maven 生成的hadoop jar包

运行命令&#xff1a; hadoop jar ./jar包名字 class对象路径 输入路径 输出路径 linux内部jar包测试 cd 到以下目录&#xff0c;创建以下文件夹 [rootreagan180 ~]# cd /opt/soft/hadoop313/share/hadoop/mapreduce/ 创建文件夹&#xff08;读取路径&#xff09; [roo…

ETL基础概念及要求详解

ETL基础概念及要求详解概念ETL与ELT数据湖与数据仓库ETL应用场景ETL具体流程及操作要求抽取清洗转换加载ETL设计模式SQL脚本语言ETL工具设计ETL工具SQLETL接口设计要求明确接口属性约定接口形式确定接口抽取方法规范接口格式概念 ETL即Extract&#xff08;抽取&#xff09;Tra…

Python学习-----无序序列1.0(字典的创建、查看、添加、修改、删除/替换)

目录 前言&#xff1a; 字典是什么 字典的特点 1.字典的创建 &#xff08;1&#xff09;直接创建{} &#xff08;2&#xff09;dict() 函数创建 2.字典的查询 &#xff08;1&#xff09;get()函数 &#xff08;2&#xff09;获取字典一组内容 3.字典键值对的添加 &a…

1CN/Jaccard/PA/AA/RA/Katz/PageRank/SimRank

common neighbors&#xff08;CN&#xff09; 公共邻居的数量。 Jaccard 用于比较有限样本集之间的相似性与差异性。Jaccard系数值越大&#xff0c;样本相似度越高。 preferential attachment&#xff08;PA&#xff09; 节点倾向于连接到节点度较高的节点上&#xff0c;&…

BSN-DDC基础网络详解(二):快速接入指南

本文将为大家介绍BSN算力中心方和DDC网络平台方接入DDC网络的基本流程&#xff0c;如下图所示&#xff0c;算力中心方和平台方依次执行图内左侧流程&#xff0c;右侧流程由DDC网络运营人员操作。01注册门户账号注册在接入之前&#xff0c;算力中心方和平台方需要先注册一个官方…

Android性能优化:getResources()与Binder交火导致的界面卡顿优化

欢迎&#xff1a;https://juejin.cn/post/7198430801851531324/ 欢迎&#xff1a;https://nasdaqgodzilla.github.io/2023/02/10/Android%E6%80%A7%E8%83%BD%E4%BC%98%E5%8C%96%EF%BC%9AgetResources-%E4%B8%8EBinder%E4%BA%A4%E7%81%AB%E5%AF%BC%E8%87%B4%E7%9A%84%E7%95%8C%E…

Neurosynth元分析——认知解码工具,软件包安装以及使用

Neurosynth元分析——认知解码工具,软件包安装以及使用 NeuroSynth 基本简介基本原理例子Neurosynth package安装及使用创建虚拟环境安装Dependencies:安装neurosynthNeurosynth使用加载必要的包下载neurosynth数据参考如上图所示。NeuroSynth 元分析感兴趣的区域沿功能连接梯…

玩转黑科技|ChatGPT保姆级注册指南(含免费手机号福利)

前言最近爆火的ChatGPT大家都应该多多少少的有所听说&#xff0c;各种渠道得知大家应该见识到他的强大&#xff0c;是不是很想上手玩一玩&#xff1f;但是由于其不支持中国电话号码进行注册&#xff0c;导致【注册ChatGPT】成了众多玩家头疼的事&#xff0c;也无法体验这个机器…