我看ChatGPT

news2024/11/27 6:17:12

ChatGPT出现后惊喜或惊醒了很多人。惊喜是因为没想到大型语言模型(LLM,Large Language Model)效果能好成这样;惊醒是顿悟到我们对LLM的认知及发展理念,距离世界最先进的想法,差得有点远。我属于后知后觉的那批人,前两天才按照导师的安排调研了相关技术和应用,以及和我国的差距,写篇博客总结一下我的一些想法。


实话实说,国内在大型语言模型和智能对话相关技术方面,此刻,距离国外最先进技术的差距进一步加大了。技术领先或技术差距这事情,我觉得要动态地以发展的眼光来看。在208年Bert(一种大规模预训练语言模型)出现之后的一到两年间,其实国内在这块的技术追赶速度还是很快的,也提出了一些很好的人工智能改进模型,差距拉开的分水岭应该是在 GPT 3.0出来之后,也就是2020年年中左右。在当时,其实只有很少的人觉察到:GPT 3.0它不仅仅是一项具体的技术,其实体现的是大型语言模型应该往何处去的一个发展理念。自此之后,差距拉得越来越远,ChatGPT只是这种发展理念差异的一个自然结果。所以,我个人认为,抛开是否有财力做超大型LLM这个因素(因为OpenAI训练ChatGPT花费是120亿美金左右)。如果单从技术角度看,差距主要来自于对LLM的认知以及未来应往何处去的发展理念的不同。

国内被国外技术甩得越来越远,这个是事实,不承认也不行。前阵子网上很多人担忧说国内AI现在处于“危急存亡之秋”,我觉得倒也不至于这么严重。君不见,这个世界上,具备这么超前眼光的只有OpenAI一家吗?包括Google在内,其实对于LLM发展理念的理解,明显都落后OpenAI一个身位。现实是OpenAI表现过于优秀,把所有人都甩开了,不仅仅是国内。

我觉得,OpenAI对LLM在理念及相关技术方面,领先国外的Google、DeepMind大约半年到一年的时间,领先国内大概两年到三年左右的时间。在大型语言模型这个事情上,感觉梯队很明显,谷歌应该是排在第二位,最能体现谷歌技术眼光的是PaLM和Pathways,推出时间大概在22年2月到4月间,同一时期,OpenAI推出的却是InstructGPT,从这里就可以看出谷歌和OpenAI的差距了。至于2月8号谷歌推出的聊天机器人Bard,是为了和微软的搜索引擎Bing 竞争,有点赶鸭子上架的味道,当然结果也没有达到谷歌投资者的合理预期,扯远了。说到DeepMind之前的重心一直在强化学习攻克游戏和AI预测蛋白质结构这些方面,切入大型语言模型其实很晚,应该是21年才开始重视这个方向,目前也处于追赶状态。Meta就更不用说了,重心一直不在LLM上,还在元宇宙概念里挣扎着,目前感觉也发力开始追赶。这还是目前做得最好的一批机构,尚且如此,更何况国内呢?我觉得情有可原。至于OpenAI关于大型语言模型的理念是什么,我在本文的最后一部分,会谈谈我的一些想法。

AI语言模型的巨大冲击


那么LLM技术出现后,对于整个人工智能语言模型研究有什么影响呢?我觉得主要有两点。

影响一:中间任务的消亡

自然语言模型是一个宏观研究领域的统称,里面有五花八门具体的子领域与子方向,如果仔细分析,从任务的性质角度,可以把这些任务分成两大类:一类可以叫做“中间任务”,一类可以称为“最终任务”。

典型的中间任务包括:中文分词、词性标注、NER、句法分析、指代消解、语义Parser等,这类任务一般并不解决应用中的实际需求,大多数是作为那些解决实际需求任务的中间阶段或者辅助阶段存在的,比如几乎没有需求说,我要一个句法Parser,把这个句子的句法分析树给用户看看,用户不需要看到这些NLP的中间阶段处理结果,他只关心某个具体任务你有没有干好。“最终任务”包括比如文本分类、文本相似性计算、机器翻译、文本摘要等等,有很多。这类任务的特点是每个子领域都解决某个实际需求,任务结果基本能直接呈现给用户,比如用户确实存在给你一句英文,告诉他中文是什么的需求。

按理说,“中间任务”就不应该出现,而之所以会存在,这是技术发展水平不够高的一种体现。在技术发展早期阶段,因为当时的技术相对落后,很难一步做好有难度的最终任务。比如机器翻译,早期技术要做好机器翻译是很困难的,于是科研人员就把难题分而治之,分解成分词、词性标注、句法分析等各种中间阶段,先把每个中间阶段做好,然后再拼起来完成最终任务,这也是没办法的事情。

但是自从Bert/GPT出现之后,其实就没有必要做这些中间任务了,因为通过大量数据的预训练,Bert/GPT已经把这些中间任务作为语言学特征,吸收到了几千亿的训练参数里,此时我们完全可以端到端地直接解决那些最终任务,而无须对这种中间过程专门建模。这里可能争议最大的是中文分词,其实道理也是一样的,哪些字应该组成一个词,这个其实你不用管,让LLM自己当特征去学就行了,只要对于解决任务有帮助,它自然会去学该学的合理分词方式,也未必一定要和我们人类理解的分词规则相同。

基于以上认知,其实在Bert/GPT一出现,你就应该得出这类NLP的中间阶段的任务,会逐步退出历史舞台这个结论。

影响二:不同研究方向技术路线的统一

在说明具体影响前,我们先讨论下另外一种自然语言模型任务划分方式,这对于理解后面内容有帮助。如果对“最终任务”进一步进行分类,又大致可以分为两大不同类型的任务:自然语言理解类任务和自然语言生成类任务。如果排除掉“中间任务”的话,典型的自然语言理解类任务包括文本分类、句子关系判断、情感倾向判断等,这种任务本质上都是分类任务,就是说输入一个句子(文章),或者两个句子,模型参考所有输入内容,最后给出属于哪个类别的判断。自然语言生成也包含很多NLP研究子方向,比如聊天机器人、机器翻译、文本摘要、问答系统等。生成类任务的特点是给定输入文本,对应地,模型要生成一串输出文本。这两者的差异主要体现在输入输出形式上。

自从Bert/GPT模型诞生后,出现了明显的技术统一趋向。首先,NLP中不同的子领域,其特征抽取器都逐渐从LSTM/CNN统一到Transformer上。其实,自Bert公开后不久,就应该意识到,这必然会成为技术趋势。不仅统一了自然语言模型诸多领域,也正在逐步地替换图像处理各种任务中被广泛使用的CNN等其它模型的进程之中,类似的,多模态模型目前也基本都采用了Transformer模型。这种Transformer从NLP出发,攻城略地逐步统一AI越来越多领域的趋势,起始于2020年底出现的Vision Transformer (ViT) ,之后蓬勃发展,到目前已大获成功,且其继续向更多领域拓展的势头会越来越迅猛。

对国内研究的巨大冲击


谈完了对于对于AI发展的影响,下面再认真讨论一下对于国内研究者ChatGPT带来的巨大冲击。其实,基于上面的论述,影响也是这两点。

影响一:很多语言模型子领域不再具备独立研究价值

就语言模型(NLP)领域而言,这次范式转换,意味着很多目前独立存在的NLP研究领域,将被纳入LLM的技术体系,进而不再独立存在,逐步消失。尽管NLP中很多“中间任务”,继续作为独立研究领域存在不再必要,但是大多数“最终任务”,仍然是以独立研究领域存在的,只是切换成在“预训练+fine-tuning”框架下,面对领域独有问题,陆续提出新的改进方案。

目前研究表明,很多NLP任务,随着LLM模型规模增长,效果会大幅提升。据此,我觉得可得到如下推论:大多数某领域所谓“独有”的问题,大概率只是缺乏领域知识导致的一种外在表象,只要领域知识足够多,这个所谓领域独有的问题,就可以被很好地解决掉,其实并不需要专门针对某个具体领域问题,冥思苦想去提出专用解决方案。也许AGI的真相超乎意料地简单:你只要把这个领域更多的数据交给LLM,让它自己学习更多知识即可。

在这个背景下,同时,ChatGPT证明了我们现在是可以直接去追求理想LLM模型的,那么,未来的技术发展趋势应该是:追求规模越来越大的LLM模型,通过增加预训练数据的多样性,来涵盖越来越多的领域,LLM自主从领域数据中通过预训练过程学习领域知识,随着模型规模不断增大,很多问题随之得到解决。研究重心会投入到如何构建这个理想LLM模型,而非去解决某个领域的具体问题。这样,越来越多NLP的子领域会被纳入LLM的技术体系,进而逐步消失。

我认为,判断某个具体领域是否该立即停止独立研究,其判断标准可采取以下两种方法,占其一即可:第一,判断某个任务,是否LLM的研究效果超过人类表现,对于那些LLM效果超过人类的研究领域,已无独立研究的必要。举个例子,GLUE与SuperGLUE测试集合里的很多任务,目前LLM效果已超过人类表现,与这个数据集合密切相关的研究领域,其实就没有继续独立存在的必要。第二,对比两种模式的任务效果,第一种模式是用较大的领域专用数据进行Fine-tuning,第二种是few-shot prompting或instruct-based方法。如果第二种方法效果达到或超过第一种方法,则意味着这个领域没有继续独立存在的必要性。如果用这个标准来看,其实很多研究领域,目前fine-tuning效果还是占优的(因为这种模式领域训练数据量大),看似还可独立存在。但是考虑到很多任务随着模型规模增大,few shot prompting效果持续增长,随着更大模型的出现,这个拐点很可能短期就会达到。

如果上述猜测成立,将意味着如下残酷事实:对于很多ai搞自然语言处理领域的研究人员,将面临往何处去的选择,是继续做领域独有问题呢?还是放弃这种看似前途不大的方式,转而去建设更好的LLM?如果选择转向去建设LLM,又有哪些机构有能力、有条件去做这个事情呢?你对这个问题的回答会是什么呢?

影响二:更多NLP之外的研究领域将被纳入LLM技术体系

如果站在AGI的视角,参照之前描述的理想LLM模型,它所能完成的任务,不应局限于NLP领域,或某一两个学科领域,理想中的LLM应该是领域无关的通用人工智能模型,它现在在某一两个领域做得好,不代表只能做这些任务。ChatGPT的出现,证明了现在这个时期,我们去追求AGI是有可行性的,而现在是抛开“领域学科”这个思维束缚的时候了。

ChatGPT除了展示出以流畅的对话形式解决各种NLP任务外,也具备强大的代码能力。很自然的,之后越来越多其它的研究领域,也会被逐步纳入LLM体系中,成为通用人工智能的一部分。

LLM从NLP向外进行领域拓展,一个自然的选择就是图像处理及多模态相关任务。目前已经有些工作在尝试把多模态融入,让LLM成为一个支持多模态输入输出的通用人机接口,典型的例子包括DeepMind的Flamingo和微软的“Language Models are General-Purpose Interfaces”,上图展示了这种方式的概念结构。

我的判断是无论是图像还是多模态,未来被融入LLM成为好用的功能,可能比我们想象的进度要慢。主要原因在于:尽管图像领域最近两年也一直在模仿Bert预训练的路子,尝试引入自监督学习,释放模型自主从图像数据中学习知识的能力,典型技术就是“对比学习”和MAE,这是两条不同的技术路线。然而,从目前效果来看,尽管取得了很大的技术进步,但貌似这条路尚未走通,这体现在图像领域预训练模型应用到下游任务,带来的效果收益,远不如Bert或GPT应用在NLP下游任务那样显著。所以,图像预处理模型仍需深入探索,以释放图像数据的潜力,而这会迟滞它们被统一到LLM大模型的时间。当然,如果哪天这条路被趟通,大概率会复现NLP领域目前的局面,就是图像处理各个研究子领域可能会逐步消失,被融入到大型LLM中来,直接完成终端任务。

除了图像与多模态,很明显,其它领域也会逐渐被纳入到理想LLM中来,这个方向方兴未艾,是具备高价值的研究主题。

以上是我对其影响的个人思考,接下来,我们可以大胆地预测一下大型语言模型接下来怎么走?

未来之路:LLM研究趋势究及值得研点方向


这里列出一些我个人认为比较重要的LLM研究领域,或值得深入探索的研究方向。

探索LLM模型的规模天花板

尽管继续推大LLM模型的规模,这事看似没有技术含量,但是其实这个事情异常重要。我个人判断,自从Bert出现以来,到GPT 3,再到ChatGPT,大概率这些给人印象深刻的关键技术突破,核心贡献都来自于LLM模型规模的增长,而非某项具体技术。说不定,揭开AGI真正的钥匙就是:超大规模及足够多样性的数据、超大规模的模型,以及充分的训练过程。再者,做超大规模的LLM模型,对技术团队的工程实现能力要求是非常高的,也不能认为这事情缺乏技术含量。

那么继续推大LLM模型规模,有什么研究意义呢?我觉得有两方面的价值。首先,如上所述,我们已知,对于知识密集型的任务,随着模型规模越大,各种任务的效果会越来越好;而对很多推理类型的有难度的任务,加上CoT Prompting后,其效果也呈现出遵循Scaling law的趋向。那么,很自然的一个问题就是:对于这些任务,LLM的规模效应,能将这些任务解决到何种程度?这是包括我在内,很多人关心的问题。其次,考虑到LLM具备的神奇的“涌现能力”,如果我们继续增加模型规模,它会解锁哪些让我们意想不到的新能力呢?这也是很有意思的问题。考虑到以上两点,我们仍然需要不断增大模型规模,看看模型规模对解决各类任务的天花板在哪里。

当然,这种事情也就只能说说,对99.99%的从业者来说,是没有机会和能力做这个事情的。要做这个事情,对研究机构的财力及投入意愿、工程能力、技术热情,都有极高的要求,缺一不可。能做这事情的机构,粗估下来,国外不超过5家,国内不超过3家。

增强LLM的复杂推理能力

正如之前对LLM推理能力的叙述,尽管LLM在最近一年推理能力得到了很大的提升,但是很多研究表明,目前LLM能够解决得比较好的推理问题,往往都相对简单,LLM的复杂推理能力仍然薄弱,比如即使是简单的字符拷贝推理或者加减乘除运算,当字符串或者数字非常长的时候,LLM推理能力会极速下降,再比如行为规划能力等复杂推理能力很弱。总而言之,加强LLM的复杂推理能力,应该是LLM未来研究中最重要的环节之一。

前文有述,加入代码加入预训练,这是一种直接增强LLM推理能力的方向。这个方向目前研究尚显不足,更像是实践经验的总结,探索背后的原理,并进而引入更多类型除代码外的新型数据来增强LLM的推理能力,这可能是更本质提升推理能力的方向。

LLM纳入NLP之外更多其它研究领域

目前的ChatGPT擅长NLP和Code任务,作为通向AGI的重要种子选手,将图像、视频、音频等图像与多模态集成进入LLM,乃至AI for Science、机器人控制等更多、差异化更明显的其它领域逐步纳入LLM,是LLM通往AGI的必经之路。而这个方向才刚刚开始,因此具备很高的研究价值。

高质量数据工程

对于神经网络模型来说,数据是其根本,预训练过程可以理解为从数据中吸取其中所包含知识的过程。因此,我们需要进一步加强对高质量数据的挖掘、收集及清洗等工作。

关于数据,需要考虑两个方面:数据的质量和数量。而根据T5的对比实验,我们可以得出结论:在数量和质量两个因素里,质量优先,正确的道路应该是在保证数据质量的前提下,再去增大数据规模。

数据质量,包括数据的信息含量以及数据的多样性等多个衡量标准,比如Wiki明显就属于世界知识密度极高的高质量数据,这是从信息含量来说的;而增加数据类型的多样性,无疑是激发LLM各种新能力的根本,比如加入问答网站的数据,对于LLM的QA能力提升是有直接帮助的。多样化的数据赋予了LLM更好解决更多不同类型任务的能力,所以,这可能是数据质量里最关键的标准。

关于数据数量,原则上互联网上公开发布的数据都可以纳入LLM模型的预训练过程。那么,它的极限在哪里?“Will we run out of data? An analysis of the limits of scaling datasets in Machine Learning” 对此进行了估算,结论是到2026年左右,高质量的NLP数据将会用光,低质量NLP数据会在2030到2050年用光,而低质量图像数据会在2030到2060年用光。而这意味着:要么到时我们有新类型的数据源,要么我们必须增加LLM模型对数据的利用效率。否则,目前这种数据驱动的模型优化方式将会停止进步,或者收益减少。

ChatGPT:为什么是OpenAI


为什么是OpenAI作出了ChatGPT,而不是其它机构呢?我们在这里可以做个简单分析。

在本文开头,我们提到了OpenAI看待LLM的理念。OpenAI是怎么看待LLM的呢?回顾它不断推出的技术,可以看出,它其实从GPT 1.0开始,基本就坚定地把LLM看做是通往AGI的一条必由之路。具体而言,在OpenAI眼中,未来的AGI应该长这个样子:有一个任务无关的超大型LLM,用来从海量数据中学习各种知识,这个LLM以生成一切的方式,来解决各种各样的实际问题,而且它应该能听懂人类的命令,以便于人类使用。其实对LLM发展理念的理解,在前半部分,就是“构建一个任务无关的超大型LLM,让它从海量数据中学习各种知识”,这一点几乎是大家的共识,能体现出OpenAI眼光的其实是后半部分。

OpenAI的理念比较超前,对自我定位从一开始就定得比较高,始终坚定不移地探索上述方式是否可以实现AGI。OpenAI之所以能作出ChatGPT,胜在一个是定位比较高,另一个是不受外界干扰,态度上坚定不移。

我们可以回顾下它走的一些关键路程:GPT 1.0走的是生成模式的自回归语言模型路线,比Bert出来的还早些。Bert证明了:双向语言模型对于很多NLP理解类任务,效果比自回归这种单向语言模型效果更好。尽管如此,GPT 2.0并没有因此切换到双向语言模型这条路上,仍然走文本生成的路,而且开始尝试零示例(zero shot)prompt和少量示例(few shot)prompt。其实这时候, OpenAI心目中的AGI已经开始浮出水面,逐渐显示出轮廓了。只是因为zero shot/few shot效果比Bert+fine-tuning差的比较远,所以大家都没太当回事,甚至不理解它为什么要始终坚持走单向语言模型的路线。这个时候,我估计即使是OpenAI自己,也不一定能确保这条路肯定能走通。

但是,这不妨碍它继续在这条路上往后走。GPT 3.0已经展示出了比较强大的zero shot/few shot prompt能力,这时候OpenAI心目中的AGI已经完全漏出水面,轮廓清晰,而且它的效果也证明了这条路,是有较大可能走得通的。GPT 3.0是一个决定LLM发展方向的叉路口和分水岭,与之对应的另外一条路是“Bert+fine-tuning”模式。在这个岔路口,不同的从业者选择走上了不同的道路,后面的技术差距也是从这里开始拉开的。很遗憾地是,国内很多从业者选择继续在“Bert+fine-tuning”这条路上往后走,这也是造成今天落后局面的一个关键时间节点。再往后,就是InstructGPT和ChatGPT了,OpenAI通过ChatGPT证明了一点;虽然我们距离真正的AGI,可能还有很长的路要走,但是通过超大LLM走向AGI这条路,目前看是可行的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/336073.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ubuntu 使用 adb 工具卸载鸿蒙系统预装软件

准备工作 打开 USB 调试 进入 “设置->关于手机” 连续点击版本号, 直到有提示开启了"开发人员选项" 进入 “设置->系统和更新->开发人员选项”, 打开 USB 调式, 顺便可以把"自动系统更新"关了 下载 adb 工具 官方地址: https://developer.an…

打通数据价值链,百分点数据科学基础平台实现数据到决策的价值转换 | 爱分析调研

随着企业数据规模的大幅增长,如何利用数据、充分挖掘数据价值,服务于企业经营管理成为当下企业数字化转型的关键。 如何挖掘数据价值?企业需要一步步完成数据价值链条的多个环节,如数据集成、数据治理、数据建模、数据分析、数据…

CoreData + CloudKit 支持的 App 在导出(export)新建托管对象时内存飙升导致被杀死的解决

问题现象 CoreData + CloudKit 支持的 App 在新建托管对象并同步导出到云时可能会导致进程内存疯狂增长,最终很快被系统杀死。 如果你的 App 满足以下三点,那么很可能出现这种情况: CoreData + CloudKit 支持云存储中已存入大量数据(1.5GB+)CoreData 数据结构包含若干一…

一起学习用Verilog在FPGA上实现CNN----(六)SoftMax层设计

1 SoftMax层设计 1.1 softmax SoftMax函数的作用是输入归一化,计算各种类的概率,即计算0-9数字的概率,SoftMax层的原理图如图所示,输入和输出均为32位宽的10个分类,即32x10320 本项目softmax实现逻辑为: …

计算机操作系统 左万利 第二章课后习题答案

计算机操作系统 左万利 第二章课后习题答案 1、为何引进多道程序设计,在多道程序设计中,内存中作业的道数是否越多越好?说明原因。 引入多道程序设计技术是为了提高计算机系统资源的利用率。在多道程序系统中,内存中作业的道数并…

Windows 搭建ARM虚拟机 UOS系统

搭建环境安装虚拟机下载虚拟机QEMU,https://www.qemu.org/download/,目前最新版本是7.2.0。安装完成后,需要将qemu的安装路径设置到环境变量完成后运行cmd,测试环境变量配置完成。qemu-system-aarch64 --version如上截图所示&…

【QT】QHostInfo 和 QNetworkInterface 的使用

目录1. Qt网络模块2. QHostInfo2.1 公共函数2.2 静态函数3. QNetworkInterface3.1 公共函数3.2 静态函数4. 代码示例Dialog.hDialog.cpp界面展示1. Qt网络模块 使用Qt网络模块,需要在配置文件.pro中添加: Qt network2. QHostInfo 2.1 公共函数 QLis…

10分钟学会Jmeter接口测试

一提到接口测试,通常大家会有这样的疑问:前端测试不是已经覆盖到各种业务逻辑了吗?为什么还要做接口测试,接口测试和前端测试是不是重复了?对于这个问题,可以从下面几个方面来解释: 什么是接口…

OpenMMLab AI实战营 第6课 语义分割与MMSegmentation

第6课 语义分割与MMSegmentation 1. 语义分割简介 任务:将图像按照物体的类别分割成不同的区域,等价于对每个像素进行分类应用 无人驾驶人像分割智能遥感医疗影像分析 语义分割 vs 实例分割 vs 全景分割 语义分割:仅考虑像素的类别&#xf…

如何利用火遍全球的ChatGPT搞钱?

火遍全球的ChatGPT想必大家都知道了。已经有人借助它赚到了2023年的第一桶金,连比尔盖茨都称赞ChatGPT不亚于互联网的诞生。还有人借助Chagpt通过了Google面试,拿到了年薪18万美元的工程师offer。要明白,年薪百万的谷歌程序员,对于…

百度富文本UE的问题集合

百度富文本编辑能上传视频成功但是在浏览器不能播放、显示的问题百度富文本视频封面空白问题百度富文本编辑器UMEditor 添加视频无法删除百度富文本编辑器结果存数据库取出来到js赋值报错怎么让浏览器重新加载修改过的JS文件,而不是沿用缓存里的百度富文本编辑能上传…

智慧物流管理系统

智慧物流运用物联网、大数据、云计算、人工智能等技术优化物流决策过程。智慧物流获取、分析物流信息并做出决策,从商品源开始实时跟踪与管理,保证信息流快于商品流,实现信息与物质快速、高效、流畅地运转,集自动化、数字化、网络…

浏览器如何使用HTTP防止ip限制

当我们浏览网页尤其是频发刷新网页时,会跳出来验证码。主要因为频繁刷新导致目标网页限制了您本地ip,正常过一段时间也或许恢复,如果遇到紧急的事情急需访问,不妨试试下面的操作。不管是网页还是电脑游戏都可以通过改变地址实现防…

Linux内核移植(源码分析、配置与编译)

目录 一、Linux内核概述 1.1内核与操作系统 ​编辑1.2Linux层次结构 1.3Linux内核特点 二、Linux内核源码结构 2.1Linux内核源码获取 2.2Linux内核源码结构 三、Linux内核源码的配置和编译 3.1Linux内核源码配置 3.2make menuconfig 3.3内核编译(以下命令…

Java学习记录day6

书接上回 类与对象 static关键字 static的作用: 修饰一个属性:声明为static的变量实质上就是一个全局变量,其生命周期为从类被加载开始一直到程序结束;修饰方法:无须本类的对象也可以调用该方法;修饰一个类&#x…

Yii中render和renderPartial的区别

一、Yii项目来源二、配置yiisoft/yii2-app-basic,写个Demo1、默认的首页2、自定义Demo的html内容3、php渲染代码1)、render() 渲染2)、renderPartial() 渲染三、给出结论一、Yii项目来源 直接composer安装:composer create-proje…

注意力机制(SE,ECA,CBAM) Pytorch代码

注意力机制1 SENet2 ECANet3 CBAM3.1 通道注意力3.2 空间注意力3.3 CBAM4 展示网络层具体信息1 SENet SE注意力机制(Squeeze-and-Excitation Networks):是一种通道类型的注意力机制,就是在通道维度上增加注意力机制,主要内容是是…

【光线追踪】光线追踪重投影方法(Ray Tracing Reprojection)

光线追踪重投影方法 重投影这项技术一般用于时间性帧复用技术上,例如TAA(Temporal Anti-Aliasing)反走样或者抗锯齿技术。读这篇文章最好先对TAA这类技术的算法流程有了解。 1.TAA抗锯齿技术简介 先简单介绍下TAA抗锯齿的原理,在游戏中,当前…

解决ThinkPHP5.1出现MISS缓存未命中问题

一淘模板(56admin.com)给大家带来了关于ThinkPHP5.1的相关知识,其中主要介绍了CDN是什么?为什么使用它?怎么解决ThinkPHP5.1 MISS缓存未命中问题?感兴趣的朋友下面一起来看一下吧,希望对大家有帮…

疑难杂症篇(二十一)--Ubuntu18.04安装usb-cam过程出现的问题

对Ubuntu18.04{\rm Ubuntu 18.04}Ubuntu18.04环境下的ROS{\rm ROS}ROS的melodic{\rm melodic}melodic版本安装usb−cam{\rm usb-cam}usb−cam过程出现的两个常见问题提出解决方案。 1.问题1:usb-cam功能包编译时出现"未定义的引用"的问题 问题描述&#…