理解HDFS工作流程与机制,看这篇文章就够了

news2024/11/26 18:51:57

HDFS(The Hadoop Distributed File System) 是最初由Yahoo提出的分布式文件系统,它主要用来:

1)存储大数据

2)为应用提供大数据高速读取的能力

重点是掌握HDFS的文件读写流程,体会这种机制对整个分布式系统性能提升带来的好处。

HDFS工作流程与机制

⚫ HDFS集群角色与职责

⚫ HDFS写数据流程(上传文件)

⚫ HDFS读数据流程(下载文件)

官方架构图

主角色:namenode

⚫ NameNode是Hadoop分布式文件系统的核心,架构中的主角色。

⚫ NameNode维护和管理文件系统元数据,包括名称空间目录树结构、文件和块的位置信息、访问权限等信息。

⚫ 基于此,NameNode成为了访问HDFS的唯一入口。

NameNode内部通过内存和磁盘文件两种方式管理元数据。

⚫ 其中磁盘上的元数据文件包括Fsimage内存元数据镜像文件和edits log(Journal)编辑日志。

从角色:datanode

⚫ DataNode是Hadoop HDFS中的从角色,负责具体的数据块存储

⚫ DataNode的数量决定了HDFS集群的整体数据存储能力。通过和NameNode配合维护着数据块。

主角色辅助角色: secondarynamenode

⚫ Secondary NameNode充当NameNode的辅助节点,但不能替代NameNode。

⚫ 主要是帮助主角色进行元数据文件的合并动作。可以通俗的理解为主角色的“秘书”。

namenode职责

⚫ NameNode仅存储HDFS的元数据:文件系统中所有文件的目录树,并跟踪整个集群中的文件,不存储实际数据。

⚫ NameNode知道HDFS中任何给定文件的块列表及其位置。使用此信息NameNode知道如何从块中构建文件。

⚫ NameNode不持久化存储每个文件中各个块所在的datanode的位置信息,这些信息会在系统启动时从DataNode 重建。

⚫ NameNode是Hadoop集群中的单点故障。

⚫ NameNode所在机器通常会配置有大量内存(RAM)。

datanode职责

⚫ DataNode负责最终数据块block的存储。是集群的从角色,也称为Slave。

⚫ DataNode启动时,会将自己注册到NameNode并汇报自己负责持有的块列表。

⚫ 当某个DataNode关闭时,不会影响数据的可用性。 NameNode将安排由其他DataNode管理的块进行副本复制 。

⚫ DataNode所在机器通常配置有大量的硬盘空间,因为实际数据存储在DataNode中。

​HDFS写数据流程(上传文件)

写数据完整流程图

核心概念--Pipeline管道

Pipeline,中文翻译为管道。这是HDFS在上传文件写数据过程中采用的一种数据传输方式。

⚫ 客户端将数据块写入第一个数据节点,第一个数据节点保存数据之后再将块复制到第二个数据节点,后者保存后将其复制到第三个数据节点。

为什么datanode之间采用pipeline线性传输,而不是一次给三个datanode拓扑式传输呢?

⚫ 因为数据以管道的方式,顺序的沿着一个方向传输,这样能够充分利用每个机器的带宽,避免网络瓶颈和高延迟时 的连接,最小化推送所有数据的延时。

⚫ 在线性推送模式下,每台机器所有的出口宽带都用于以最快的速度传输数据,而不是在多个接受者之间分配宽带。

核心概念--ACK应答响应

⚫ ACK (Acknowledge character)即是确认字符,在数据通信中,接收方发给发送方的一种传输类控制字符。表示发来的数据已确认接收无误。

⚫ 在HDFS pipeline管道传输数据的过程中,传输的反方向会进行ACK校验,确保数据传输安全。

核心概念--默认3副本存储策略

⚫ 默认副本存储策略是由
BlockPlacementPolicyDefault指定。

核心概念--默认3副本存储策略

⚫ 第一块副本:优先客户端本地,否则随机

⚫ 第二块副本:不同于第一块副本的不同机架。

⚫ 第三块副本:第二块副本相同机架不同机器。

1、HDFS客户端创建对象实例DistributedFileSystem, 该对象中封装了与HDFS文件系统操作的相关方法。

2、调用DistributedFileSystem对象的create()方法,通过RPC请求NameNode创建文件。

NameNode执行各种检查判断:目标文件是否存在、父目录是否存在、客户端是否具有创建该文件的权限。检查通过 ,NameNode就会为本次请求记下一条记录,返回FSDataOutputStream输出流对象给客户端用于写数据。

3、客户端通过FSDataOutputStream输出流开始写入数据。

4、客户端写入数据时,将数据分成一个个数据包(packet 默认64k), 内部组件DataStreamer请求NameNode挑选出适合存储数据副本的一组DataNode地址,默认是3副本存储。

DataStreamer将数据包流式传输到pipeline的第一个DataNode,该DataNode存储数据包并将它发送到pipeline的第二个DataNode。同样,第二个DataNode存储数据包并且发送给第三个(也是最后一个)DataNode。

5、传输的反方向上,会通过ACK机制校验数据包传输是否成功;

6、客户端完成数据写入后,在FSDataOutputStream输出流上调用close()方法关闭。

7、DistributedFileSystem联系NameNode告知其文件写入完成,等待NameNode确认。

因为namenode已经知道文件由哪些块组成(DataStream请求分配数据块),因此仅需等待最小复制块即可成功返回 。

最小复制是由参数
dfs.namenode.replication.min指定,默认是1.

HDFS读数据流程(下载文件)

读数据完整流程图

1、HDFS客户端创建对象实例DistributedFileSystem, 调用该对象的open()方法来打开希望读取的文件。

2、DistributedFileSystem使用RPC调用namenode来确定文件中前几个块的块位置(分批次读取)信息

对于每个块,namenode返回具有该块所有副本的datanode位置地址列表,并且该地址列表是排序好的,与客户端的网络拓扑距离近的排序靠前。

3、DistributedFileSystem将FSDataInputStream输入流返回到客户端以供其读取数据。

4、客户端在FSDataInputStream输入流上调用read()方法。然后,已存储DataNode地址的InputStream连接到文件中第一个块的最近的DataNode。数据从DataNode流回客户端,结果客户端可以在流上重复调用read()

5、当该块结束时,FSDataInputStream将关闭与DataNode的连接,然后寻找下一个block块的最佳datanode位置。

这些操作对用户来说是透明的。所以用户感觉起来它一直在读取一个连续的流。

客户端从流中读取数据时,也会根据需要询问NameNode来检索下一批数据块的DataNode位置信息。

6、一旦客户端完成读取,就对FSDataInputStream调用close()方法。


大数据基础:

开发入门Linux入门MySQL数据库

核心基础Hadoop

数仓技术Hive数仓项目

PB内存计算Python入门Python进阶pyspark框架Hive+Spark项目

Python+大数据开发
Linux入门:

新版Linux零基础快速入门到精通,全涵盖linux系统知识、常用软件环境部署、Shell脚本、云平台实践、大数据集群项目实战等
MySQL数据库:MySQL知识精讲+mysql实战案例_零基础mysql数据库入门到高级全套教程
Hadoop入门:大数据Hadoop入门视频教程,适合零基础自学的大数据Hadoop教程
Hive数仓项目:大数据项目实战教程_大数据企业级离线数据仓库,在线教育项目实战(Hive数仓项目完整流程)

PB内存计算
Python入门:python教程,8天python从入门到精通,学python看这套就够了
Python编程进阶:Python高级语法进阶教程_python多任务及网络编程,从零搭建网站全套教程
spark3.2从基础到精通:Spark全套视频教程,4天spark3.2快速入门到精通,基于Python语言的spark教程
Hive+Spark离线数仓工业项目实战:全网首次披露大数据Spark离线数仓工业项目实战,Hive+Spark构建企业级大数据平台

注意事项:大数据学习要业务驱动,不要技术驱动:数据科学的核心能力是解决问题。

大数据的核心目标是数据驱动的智能化,要解决具体的问题,不管是科学研究问题,还是商业决策问题,抑或是政府管理问题。

所以学习之前要明确问题,理解问题,所谓问题导向、目标导向,这个明确之后再研究和选择合适的技术加以应用,这样才有针对性,言必hadoop,spark的大数据分析是不严谨的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/333000.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

训练营day16

104.二叉树的最大深度 559.n叉树的最大深度111.二叉树的最小深度222.完全二叉树的节点个数104.二叉树的最大深度 力扣题目链接 给定一个二叉树,找出其最大深度。 二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。 说明: 叶子节点是指没有子节点的节点。 示…

javaEE 初阶 — UDP 协议

文章目录UDP 协议1. UDP协议报文结构1.1 一个 UDP 数据报能传输的最大数据1.2 校验和1.3 生成校验和的算法UDP 协议 1. UDP协议报文结构 16位UDP长度,表示整个数据报(UDP首部UDP数据)的最大长度,如果校验和出错,就会直…

计算机网络之http02| HTTPS HTTP1.1的优化

post与get请求的区别 get 是获取资源,Post是向指定URI提交资源,相关信息放在body里 2.http有哪些优点 (1)简单 报文只有报文首部和报文主体,易于理解 (2)灵活易拓展 URI相应码、首部字段都没有…

ORB-SLAM2编译、安装等问题汇总大全(Ubuntu20.04、eigen3、pangolin0.5、opencv3.4.10)

ORB-SLAM2编译、安装等问题汇总大全(Ubuntu20.04、eigen3、pangolin0.5、opencv3.4.10) 1:环境说明: 使用的Linux发行版本为Ubuntu 20.04 SLAM2下载地址为:git clone https://github.com/raulmur/ORB_SLAM2.git ORB_SLAM2 2&a…

Element UI框架学习篇(二)

Element UI框架学习篇(二) 1 整体布局 1.1 前提说明 el-container标签里面的标签默认是从左往右排列,若想要从上往下排列,只需要写el-header或者el-footer就行了 <el-container>&#xff1a;外层容器 <el-header>&#xff1a;顶栏容器。 <el-aside>&#…

Android框架源码分析——从设计模式角度看 Retrofit 核心源码

Android框架源码分析——从设计模式角度看 Retrofit 核心源码 Retrofit中用到了许多常见的设计模式&#xff1a;代理模式、外观模式、构建者模式等。我们将从这三种设计模式入手&#xff0c;分析 Retrofit2 的核心源码。 1. 宏观 Retrofit 是一个外观模式的设计 外观模式&am…

Intel处理器分页机制

分页模式 Intel 64位处理器支持3种分页模式&#xff1a; 32-bit分页PAE分页IA-32e分页 32-bit分页 32-bit分页模式支持两种页面大小&#xff1a;4KB以及4MB。 4KB页面的线性地址转换 4MB页面的线性地址转换 PAE分页模式 PAE分页模式支持两种页面大小&#xff1a;4KB以及…

Java 验证二叉搜索树

验证二叉搜索树中等给你一个二叉树的根节点 root &#xff0c;判断其是否是一个有效的二叉搜索树。有效 二叉搜索树定义如下&#xff1a;节点的左子树只包含 小于 当前节点的数。节点的右子树只包含 大于 当前节点的数。所有左子树和右子树自身必须也是二叉搜索树。示例 1&…

ChatGPT注册流程攻略,含验证码接收(图文步骤)

本文给大家分享一下我成功注册的流程&#xff01; 其实方法都类似&#xff0c;若无海外手机号码可用接验证码的平台&#xff08;ps&#xff1a;我之前使用的是SMS-Activate&#xff09; 必要准备 能够科学上网&#xff08;并且全局模式&#xff09; 能确认登录的电子邮箱&…

ffmpeg硬解码与软解码的压测对比

文章目录ffmpeg硬解码与软解码的压测一、基本知识二、压测实验1. 实验条件及工具说明2. 压测脚本3. 实验数据结果ffmpeg硬解码与软解码的压测 一、基本知识 本文基于intel集显进行压测 软解码&#xff1a;cpu对视频进行解码硬解码&#xff1a;显卡或者多媒体处理芯片对视频进…

Python编程自动化办公案例(1)

作者简介&#xff1a;一名在校计算机学生、每天分享Python的学习经验、和学习笔记。 座右铭&#xff1a;低头赶路&#xff0c;敬事如仪 个人主页&#xff1a;网络豆的主页​​​​​​ 目录 前言 一.使用库讲解 1.xlrd 2.xlwt 二.主要案例 1.批量合并 模板如下&#xf…

Python 如何快速搭建环境?

Python可应用于多平台包括 Linux 和 Mac OS X。 你可以通过终端窗口输入 “python” 命令来查看本地是否已经安装Python以及Python的安装版本。 Unix (Solaris, Linux, FreeBSD, AIX, HP/UX, SunOS, IRIX, 等等。) Win 9x/NT/2000 Macintosh (Intel, PPC, 68K) OS/2 DOS (多个…

67. Python的绝对路径

67. Python的绝对路径 文章目录67. Python的绝对路径1. 准备工作2. 路径3. 绝对路径3.1 概念3.2 查看绝对路径的方法4. 课堂练习5. 用绝对路径读取txt文件6. 加\改写绝对路径6.1 转义字符知识回顾6.2 转义字符改写7. 总结1. 准备工作 对照下图&#xff0c;新建文件夹和txt文件…

小知识点:MySQL 的 redo log、undo log、binlog 以及 Java 监控 binlog

SQL 入库流程 服务器与 MySQL 建立连接依次经过 MySQL 服务器内存中 Server 层的分析器、优化器、执行器执行器根据执行计划操作 InnoDB 引擎InnoDB 从磁盘数据文件中将 data 读到缓冲池中修改之前&#xff0c;会写入 undo log 将 data 存起来然后将缓冲池中的 data 改成 new_d…

数据结构复习(三)顺序表oj

目录 27. 移除元素 26. 删除有序数组中的重复项 88. 合并两个有序数组 27. 移除元素 给你一个数组 nums 和一个值 val&#xff0c;你需要 原地 移除所有数值等于 val 的元素&#xff0c;并返回移除后数组的新长度。 不要使用额外的数组空间&#xff0c;你必须仅使用 O(1) 额外…

多数据库学习之GBase8s查询数据库表元信息常用SQL

多数据库学习之GBase8s查询数据库表元信息常用SQL简介常用SQL创建用户创建数据库及模式获取表元数据其他参考链接简介 背景介绍 GBase 8t是基于IBM informix源代码、编译和测试体系自主研发的交易型数据库产品。 南大通用安全数据库管理系统&#xff08;简称 GBase 8s&#xff…

Linux基础命令2(常见的文件相关命令)

目录 查找文件命令 pwd 显示当前所在的工作目录&#xff08;Print working directory&#xff09; cd 切换命令&#xff08;change directory&#xff09; ls 查看目录下的文件&#xff08;list&#xff09; tree 查看目录下的子目录&#xff08;查看目录结构&#…

Grafana 系列文章(十二):如何使用Loki创建一个用于搜索日志的Grafana仪表板

概述 创建一个简单的 Grafana 仪表板, 以实现对日志的快速搜索. 有经验的直接用 Grafana 的 Explore 功能就可以了. 但是对于没有经验的人, 他们如何能有一个已经预设了简单的标签搜索的仪表板&#xff0c;以帮助一些团队在排除故障时快速找到他们正在寻找的东西。虽然 Expl…

云仓仓储的运行模式是什么?

仓库能够简单地定义为一个规划空间&#xff0c;通常是一个用于处置和贮存货物的大型商业建筑。因而&#xff0c;仓储是指在这样一个规划空间中存储和处置货物所触及的一切过程。仓库中常见的货物包括&#xff1a;;机械零配件、建筑资料、废品农产品、家具和电子产品。仓库中的一…

【面试题】经典面试题:让 a == 1 a == 2 a == 3 成立?

一、问题解析 if (a == 1 && a == 2 && a == 3) {console.log(Win) } 复制代码 如何打印除Win? 看到题目的第一眼,我是蒙蔽的.怎么可能会有如此矛盾的情况发生呢?就相当于一个人怎么可能即是小孩,又是成年人,还是老年人呢? 冷静下来,发现一些端倪。