第四章第七节:CNN练习1使用四种网络结构(VGG、ResNet、MobileNet、InceptionNet)进行cifar10训练

news2025/1/11 15:52:57

文章目录

  • 一:cifar10数据集介绍
  • 二:代码
    • (1)数据加载脚本编写
    • (2)模型搭建
      • ①:VGG
      • ②:ResNet
      • ③:MobileNetV1
      • ④:InceptionNet
    • (3)训练脚本

一:cifar10数据集介绍

cifar10数据集:CIFAR-10数据集是8000万微小图片的标签子集

  • 数据集下载链接

在这里插入图片描述

数据集由6万张32*32的彩色图片组成,一共有10个类别。每个类别6000张图片。其中有5万张训练图片及1万张测试图片。使用torchvision.datasets.CIFAR10可进行下载

train_dataset = datasets.CIFAR10(root=parametes.data_path, train=True,
                                 transform=transforms.ToTensor(), download=False)
test_dataset = datasets.CIFAR10(root=parametes.data_path, train=False,
                                transform=transforms.ToTensor(), download=False)

如下,下载后会生成5个训练块文件和1个测试块文件,每一个块文件10000张图片

在这里插入图片描述

这种文件并非图像文件,为了后续更好的训练,且能查看到训练过程中的图像变化,所以我们需要把它们转换为图像文件,转换代码如下

import pickle
import numpy as np
import glob
import os
import cv2

# 提取函数
def unpickle(file):
    with open(file, 'rb') as fo:
        dict = pickle.load(fo, encoding='bytes')
    return dict
# 类别名字
label_name = [
    "airplane",
    "automobile",
    "bird",
    "cat",
    "deer",
    "dog",
    "frog",
    "horse",
    "ship",
    "truck"
]

# 使用train_list和test_list拿到对应文件名字
train_list = glob.glob('./cifar-10-batches-py/data_batch_*')
# test_list = glob.glob('./cifar-10-batches-py/test_batch')

# 保存路径
save_path = './train/'

# 遍历
for l  in train_list:
    print(l)
    l_dict = unpickle(l)
    """
        映射为字典,有4个key
            batch_label:该图片属于哪一个batch
            labels:所属类别
            data:图像数组
            filenames:文件名
    """
    print(l_dict.keys())

    for im_idx, im_data in enumerate(l_dict[b'data']):
        # 获取类别和名字
        im_label = l_dict[b'labels'][im_idx]
        im_name = l_dict[b'filenames'][im_idx]

        # print(im_label, im_name, im_data)
        # 映射为英文名
        im_label_name = label_name[im_label]
        # 将此一维数组转为三维并交换维度
        im_data = np.reshape(im_data, [3, 32, 32])
        im_data = np.transpose(im_data, (1, 2, 0))

        # cv2.imshow("im_data", cv2.resize(im_data, (200, 200)))
        # cv2.waitKey(0)

        # 每个文件夹下创建对应类别文件夹,相同类别图片写入相同文件夹
        if not os.path.exists(os.path.join(save_path, im_label_name)):
            os.mkdir(os.path.join(save_path, im_label_name))
        cv2.imwrite(os.path.join(save_path, im_label_name, im_name.decode('utf-8')), im_data)

转换后文件结构如下

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

二:代码

(1)数据加载脚本编写

import torchvision.datasets
from torchvision import transforms
from torch.utils.data import DataLoader, Dataset
import os
from PIL import Image
import numpy as np
import glob


# 类别名字
label_name = [
    "airplane",
    "automobile",
    "bird",
    "cat",
    "deer",
    "dog",
    "frog",
    "horse",
    "ship",
    "truck"
]
# 类比名字映射索引
label_dict = {}
for idx, name in enumerate(label_name):
    label_dict[name] = idx


def default_loader(path):
    return Image.open(path).convert("RGB")

train_transforms = transforms.Compose([
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor()
])

class MyDataset(Dataset):
    """
        im_list:是一个列表,每一个元素是图片路径
        transform:对图片进行增强
        loader:使用PIL对图片进行加载
    """
    def __init__(self, im_list, transform=None, loader=default_loader):
        super(MyDataset, self).__init__()
        # imgs为二维列表,每一个子列表中第一个元素存储im_list,第二个通过label_dict映射为索引
        imgs = []

        for im_item in im_list:
            # 路径'./data/test/airplane/aeroplane_s_000002.png'中倒数第二个是标签名
            im_label_name = im_item.split("\\")[-2]
            imgs.append([im_item, label_dict[im_label_name]])

        self.imgs = imgs
        self.transform = transform
        self.loader = loader

    def __getitem__(self, index):
        im__path, im_label = self.imgs[index]

        # 会调用PIL加载图片数据
        im_data = self.loader(im__path)
        # 如果给了transoform那么就对图片进行增强
        if self.transform is not None:
            im_data = self.transform(im_data)

        return im_data, im_label

    def __len__(self):
        return len(self.imgs)

im_train_list = glob.glob(r'./data/train/*/*.png')
im_test_list = glob.glob(r'./data/test/*/*.png')
train_dataset = MyDataset(im_train_list, transform=train_transforms)
test_dataset = MyDataset(im_test_list, transform=transforms.ToTensor())

if __name__ == '__main__':
    im_train_list = glob.glob(r'./data/train/*/*.png')
    im_test_list = glob.glob(r'./data/test/*/*.png')

    train_dataset = MyDataset(im_train_list, transform=train_transforms)
    test_dataset = MyDataset(im_test_list, transform=transforms.ToTensor())
    print(len(train_dataset))
    print(len(test_dataset))

    train_loader = DataLoader(dataset=train_dataset, batch_size=6, shuffle=True, num_workers=0)
    test_loader = DataLoader(dataset=test_dataset, batch_size=6, shuffle=False, num_workers=0)

    """
    train_transforms = transforms.Compose([
        transforms.RandomResizedCrop((28, 28)),
        transforms.RandomHorizontalFlip(),
        transforms.RandomVerticalFlip(),
        transforms.RandomRotation(90),
        transforms.RandomGrayscale(0.1),
        transforms.ColorJitter(0.3, 0.3, 0.3, 0.3),
        transforms.ToTensor()
    ])

    train_dataset = torchvision.datasets.ImageFolder(root='./data/train', transform=train_transforms)
    test_dataset = torchvision.datasets.ImageFolder(root='./data/test', transform=transforms.ToTensor)
    print(train_dataset.classes[: 5])
    print("-"*30)
    print(train_dataset.class_to_idx)
    print("-"*30)
    print(train_dataset.imgs[: 5])
    
    """

(2)模型搭建

①:VGG

在这里插入图片描述

# 给定字典选择模型
cfgs = {
    'vgg11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    'vgg13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    'vgg16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
    #'vgg16': [16, 16, 'M', 32, 32, 'M', 64, 64, 64, 'M', 128, 128, 128, 'M', 128, 128, 128, 'M'],
    'vgg19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}


# 生成卷积层
def create_conv(cfg):
    layers = []
    in_chaneels = parametes.init_in_chaneels

    # 遍历列表
    for c in cfg:
        # 如果遇到"M",则增加一个最大池化层,其kernel_size=2, stride=2
        if c == 'M':
            layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
        # 如果是数字,则代表该卷积核输出,卷积核统一为3×3,填充为1
        else:
            Conv2d = nn.Conv2d(in_channels=in_chaneels, out_channels=c, kernel_size=3, padding=1)
            layers += [Conv2d, nn.ReLU(True)]
            # 下一个输入通道等于现在的输出通道
            in_chaneels = c

    return nn.Sequential(*layers)


# VGG16网络
class VGG16(nn.Module):
    def __init__(self, conv, num_classes, init_weights=False):
        super(VGG16, self).__init__()
        self.conv = conv
        self.fc = nn.Sequential(
        	# 图片输入为224×224的前提下
            nn.Linear(512*7*7, 4096),
            nn.ReLU(True),
            nn.Dropout(p=0.5),
            nn.Linear(4096, 4096),
            nn.ReLU(True),
            nn.Dropout(p=0.5),
            nn.Linear(4096, num_classes)
        )
        if init_weights:
            self._initialize_weights()

    def forward(self, x):
        x = self.conv(x)
        x = torch.flatten(x, start_dim=1)
        x = self.fc(x)

        return x

    # 参数初始化(KAIMING)
    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)

# 初始化网络
cfg = model.cfgs['vgg16']
net = model.VGG16(model.create_conv(cfg), parametes.num_classes, True)
net = net.to(parametes.device)


如下是VGG13,这种写法比较臃肿但清晰

import torch
import torch.nn as nn
import torch.nn.functional as F

class VGG13(nn.Module):
    def __init__(self):
        super(VGG13, self).__init__()

        # N * 3 * 32 * 32
        self.conv1_1 = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=3, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU()
        )
        self.conv1_2 = nn.Sequential(
            nn.Conv2d(64, 64, kernel_size=3, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU()
        )
        self.max_pooling1 = nn.MaxPool2d(kernel_size=2, stride=2)

        # N * 64 * 16 * 16
        self.conv2_1 = nn.Sequential(
            nn.Conv2d(64, 128, kernel_size=3, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU()
        )
        self.conv2_2 = nn.Sequential(
            nn.Conv2d(128, 128, kernel_size=3, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU()
        )
        self.max_pooling2 = nn.MaxPool2d(kernel_size=2, stride=2)

        # N * 128 * 8 * 8
        self.conv3_1 = nn.Sequential(
            nn.Conv2d(128, 256, kernel_size=3, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU()
        )
        self.conv3_2 = nn.Sequential(
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU()
        )
        self.max_pooling3 = nn.MaxPool2d(kernel_size=2, stride=2)

        # N * 256 * 4 * 4
        self.conv4_1 = nn.Sequential(
            nn.Conv2d(256, 512, kernel_size=3, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU()
        )
        self.conv4_2 = nn.Sequential(
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU()
        )
        self.max_pooling4 = nn.MaxPool2d(kernel_size=2, stride=2)

        # N * 512 * 2 * 2
        self.conv5_1 = nn.Sequential(
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU()
        )
        self.conv5_2 = nn.Sequential(
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU()
        )
        self.max_pooling5 = nn.MaxPool2d(kernel_size=2, stride=2)

        # N * 512 * 1 * 1

        # 全连接层
        self.fc = nn.Sequential(
            nn.Linear(512 * 1 * 1, 4096),
            nn.ReLU(True),
            nn.Dropout(p=0.5),
            nn.Linear(4096, 4096),
            nn.ReLU(True),
            nn.Dropout(p=0.5),
            nn.Linear(4096, 10)
        )

    def forward(self, x):
        out = self.conv1_1(x)
        out = self.conv1_2(out)
        out = self.max_pooling1(out)

        out = self.conv2_1(out)
        out = self.conv2_2(out)
        out = self.max_pooling2(out)

        out = self.conv3_1(out)
        out = self.conv3_2(out)
        out = self.max_pooling3(out)

        out = self.conv4_1(out)
        out = self.conv4_2(out)
        out = self.max_pooling4(out)

        out = self.conv5_1(out)
        out = self.conv5_2(out)
        out = self.max_pooling5(out)

        out = torch.flatten(out, start_dim=1)

        out = self.fc(out)
        return out

②:ResNet

在这里插入图片描述

import torch
import torch.nn as nn
import torch.nn.functional as F

# 基本跳连单元
class ResBlock(nn.Module):
    def __init__(self, in_channel, out_channel, stride=1):
        super(ResBlock, self).__init__()
        # 主干分支
        self.layer = nn.Sequential(
            nn.Conv2d(in_channel, out_channel, kernel_size=3, stride=stride, padding=1),
            nn.BatchNorm2d(out_channel),
            nn.ReLU(),
            nn.Conv2d(out_channel, out_channel, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(out_channel),
        )

        # 跳连分支
        self.shortcut = nn.Sequential()
        # 如果输入通道和输出通道不相等或者步长不是1,那么跳连分支必须再进行卷积
        if in_channel != out_channel or stride > 1:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_channel, out_channel, kernel_size=3, stride=stride, padding=1),
                nn.BatchNorm2d(out_channel),
            )
    def forward(self, x):
        # 主干
        out1 = self.layer(x)
        # 分支
        out2 = self.shortcut(x)
        # 最终结果 = 主干+分支
        out = out1 + out2
        out = F.relu(out)

class ResNet(nn.Module):
    def make_layer(self, block, out_channel, stride, num_block):
        layer_list = []
        for i in range(num_block):
            if i == 0:
                in_stride = stride
            else:
                in_stride = 1
            layer_list.append(block(self.in_channel, out_channel, in_stride))
            self.in_channel = out_channel

        return nn.Sequential(*layer_list)

    def __init__(self):
        super(ResNet, self).__init__()
        # 第一层采用普通卷积
        self.conv1 = nn.Sequential(
            nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(32),
            nn.ReLU
        )

        # 四层ResNet
        self.in_channel = 32
        self.layer1 = self.make_layer(ResBlock, 64, 2, 2)
        self.layer2 = self.make_layer(ResBlock, 128, 2, 2)
        self.layer3 = self.make_layer(ResBlock, 256, 2, 2)
        self.layer4 = self.make_layer(ResBlock, 512, 2, 2)

        self.fc = nn.Linear(512, 10)


    def farward(self, x):
        out = self.conv1(x)
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)
        out = F.avg_pool2d(out, 2)
        out = out.view(out.size(0), -1)
        out = self.fc(out)

        return out

③:MobileNetV1

在这里插入图片描述

import torch
import torch.nn as nn
import torch.nn.functional as F


class MobileNet(nn.Module):

    # 深度可分离卷积由分组卷积和点卷积构成(基本单元)
    def conv_dw(self, in_channel, out_channel, stride):
        return nn.Sequential(
            # 分组卷积
            nn.Conv2d(in_channel, in_channel, kernel_size=3, stride=stride, padding=1, groups=in_channel,
                      bias=False),
            nn.BatchNorm2d(in_channel),
            nn.ReLU(),
            # 点卷积
            nn.Conv2d(in_channel, out_channel, kernel_size=1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(out_channel),
            nn.ReLU(),
        )

    def __init__(self):
        super(MobileNet, self).__init__()
        # 标准卷积层
        self.conv1 = nn.Sequential(
            nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(32),
            nn.ReLU()
        )

        # 深度可分离卷积
        self.convdw2 = self.conv_dw(32, 32, 1)
        self.convdw3 = self.conv_dw(32, 64, 2)

        self.convdw4 = self.conv_dw(64, 64, 1)
        self.convdw5 = self.conv_dw(64, 128, 2)

        self.convdw6 = self.conv_dw(128, 128, 1)
        self.convdw7 = self.conv_dw(128, 256, 2)

        self.convdw8 = self.conv_dw(256, 256, 1)
        self.convdw9 = self.conv_dw(256, 512, 2)

        # 全连接层
        self.fc = nn.Linear(512, 10)

    def forward(self, x):
        out = self.conv1(x)
        out = self.convdw2(out)
        out = self.convdw3(out)
        out = self.convdw4(out)
        out = self.convdw5(out)
        out = self.convdw7(out)
        out = self.convdw8(out)
        out = self.convdw9(out)

        out =  F.avg_pool2d(out, 2)
        out = out.view(-1, 512)
        out = self.fc(out)

        return out



④:InceptionNet

在这里插入图片描述

import torch
import torch.nn as nn
import torch.nn.functional as F


"""
    InceptionNet属于网中网结构,对输入进行
    不同分支的卷积,最后进行concat
"""

def ConvBNRelu(in_channel, out_channel, kernel_size):
    return nn.Sequential(
        nn.Conv2d(in_channel, out_channel, kernel_size=kernel_size, stride=1, padding=kernel_size//2),
        nn.BatchNorm2d(out_channel),
        nn.ReLU()
    )


class BaseInception(nn.Module):
    def __init__(self, in_channel, out_channel_list, reduce_channel_list):
        super(BaseInception, self).__init__()

        # 定义4个分支
        # 第1个分支
        self.branch1_conv = ConvBNRelu(in_channel, out_channel_list[0], 1)
        # 剩余分支为减少计算量必须先进行压缩
        self.branch2_conv1 = ConvBNRelu(in_channel, reduce_channel_list[0], 1)
        self.branch2_conv2 = ConvBNRelu(reduce_channel_list[0], out_channel_list[1], 3)

        self.branch3_conv1 = ConvBNRelu(in_channel, reduce_channel_list[1], 1)
        self.branch3_conv2 = ConvBNRelu(reduce_channel_list[1], out_channel_list[2], 5)

        self.branch4_pool = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
        self.branch4_conv = ConvBNRelu(in_channel, out_channel_list[3], 3)


    def forward(self, x):
        out1 = self.branch1_conv(x)

        out2 = self.branch2_conv1(x)
        out2 = self.branch3_conv2(out2)

        out3 = self.branch3_conv1(x)
        out3 = self.branch3_conv2(out3)

        out4 = self.branch4_pool(x)
        out4 = self.branch4_conv(out4)

        out = torch.cat([out1, out2, out3, out4], dim=1)

        return out

class InceptionNet(nn.Module):
    def __init__(self):
        super(InceptionNet, self).__init__()
        self.block1 = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU()
        )

        self.block2 = nn.Sequential(
            nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(),
        )

        self.block3 = nn.Sequential(
            BaseInception(in_channel=128, out_channel_list=[64, 64, 64, 64], reduce_channel_list=[16, 16]),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        )

        self.block4 = nn.Sequential(
            BaseInception(in_channel=256, out_channel_list=[96, 96, 96, 96], reduce_channel_list=[32, 32]),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        )

        self.fc = nn.Linear(384, 10)


    def forward(self, x):
        out = self.block1(x)
        out = self.block1(out)
        out = self.block1(out)
        out = self.block1(out)

        out = F.avg_pool2d(out, 2)
        out = out.view(out.size(0), -1)
        out = self.fc(out)

        return out

(3)训练脚本

import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import os
from tensorboardX import SummaryWriter

from VGG13 import VGG13
from dataloader import train_dataset, test_dataset

######################## 参数指定 ###################################
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")  # 设备
batch_size = 64  # batch_size大小
epochs = 200 # 总训练轮数

# 训练和验证数据加载
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True, num_workers=0)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True, num_workers=0)

# 网络结构指定
net = VGG13()
net = net.to(device)

# 损失函数(交叉熵)
loss_function = nn.CrossEntropyLoss()

# 优化器(Adam)
optimizer = torch.optim.Adam(net.parameters(), lr=0.01)

# 学习率衰减
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.9)

# 日志
logger = SummaryWriter('./log')

step = 1
# 训练
for epoch in range(1, epochs):
    print("-----------当前epoch:{}-----------".format(epoch))
    net.train()
    for i, (X, y) in enumerate(train_loader):
        print("\r-----------当前trainbatch:{}/{}-----------".format(i, (len(train_loader))), end="")
        X = X.to(device)
        y = y.to(device)

        outputs = net(X)
        loss = loss_function(outputs, y)


        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        _, pred = torch.max(outputs.data, dim=1)
        correct = pred.eq(y.data).cpu().sum()
        accurate = correct * 100.0 / batch_size
        # print("train_loss: ", loss.item(), "accurate: ", accurate.item())
        logger.add_scalar('loss/train', loss, step)
        logger.add_scalar('accurate/train', accurate, step)

    net.eval()
    sum_loss = 0.
    sum_correct = 0
    with torch.no_grad():
        for i, (X, y) in enumerate(test_loader):
            print("\r-----------当前testbatch:{}/{}-----------".format(i, (len(test_loader))), end="")
            X = X.to(device)
            y = y.to(device)
            outputs = net(X)
            _, pred = torch.max(outputs.data, dim=1)
            correct = pred.eq(y.data).cpu().sum()
            loss = loss_function(outputs, y)
            sum_loss += loss.item()
            sum_correct += correct.item()

        test_loss = sum_loss * 1.0 / len(test_loader)
        test_accurate = sum_correct * 100.0 / len(test_loader) / batch_size
        logger.add_scalar('loss/test', test_loss, epoch)
        logger.add_scalar('accurate/test', test_accurate, epoch)
        print("test_loss: ", test_loss.item(), "test_accurate: ", test_accurate.item())
    step += 1
    # 学习率衰减
    scheduler.step()

logger.close()


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/331947.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

存储式示波器如何保存图片?

示波器是检测电子线路最有效的工具之一,通过观察电子电路中一些关键节点如某些引脚,MOS管的输出波形,可以直观的检查电路工作是否正常,验证电子电路设计是否恰当。在平时使用示波器的过程中,经常会用示波器去卡某一个信…

canvas 制作2048

效果展示 对UI不满意可以自行调整,这里只是说一下游戏的逻辑,具体的API调用不做过多展示。 玩法分析 2048 的玩法非常简单,通过键盘的按下,所有的数字都向着同一个方向移动,如果出现两个相同的数字,就将…

docker安装elashticsearch

福利:这是我的个人IT资源网站,所有资源都免费,注册登录后就可以看到密码,需要什么大家尽情选取! 从docker下载elashticsearch镜像(可以指定版本号) docker pull elasticsearch:7.4.22. 从dock…

网络安全实验室3.脚本关

3.脚本关 1.key又又找不到了 url:http://lab1.xseclab.com/xss1_30ac8668cd453e7e387c76b132b140bb/index.php 点击链接,burp抓包,发送到重放模块,点击go 得到key is : yougotit_script_now 2.快速口算 url:http:…

树莓派开机自启动Python脚本或者应用程序

树莓派开机自启动Python脚本或者应用程序前言一、对于Python脚本的自启动方法1、打开etc/rc.local文件2、编辑输入需要启动的指令3、重启树莓派验证二、对于需要读写配置文件的应用程序的自启前言 在树莓派上写了一些Python脚本,还有一个java 的jar包想要在树莓派上…

2023年,什么样的CRM,才是您最需要的?

春节假期刚刚结束,当大家还沉浸在新春佳节的喜悦中时,很多地方已经争先恐后地奋力开跑了。近日,全国各地方政府相继出台并发布了2023年数字化转型规划,纷纷结合自身的区位特色和优势资源,明确2023年乃至此后数年的数字…

动态规划详解(完结篇)——如何抽象出动态规划算法?以及解题思路

今天直接开始讲解FIRST:如何抽象出动态规划算法?这个问题,困扰了无数代OIER,包括本蒟蒻在比赛的时候,看一道题,怎么想到他是什么算法的呢?这就需要抽象能力而不同的算法,往往有着不同…

The last packet sent successfully to the server was 0 milliseconds ago. 解决办法

mybatis-generator-maven-plugin插件The last packet sent successfully to the server was 0 milliseconds agoYou must configure either the server or JDBC driver (via the serverTimezone configuration property) to use a more specifc time zone value if you want to…

Spark SQL 介绍

文章目录Spark SQL1、Hive on SparkSQL2、SparkSQL 优点3、SparkSQL 特点1) 容易整合2) 统一的数据访问3) 兼容 Hive4) 标准的数据连接4、DataFrame 是什么5、DataSet 是什么Spark SQL Spark SQL 是 Spark 用于结构化数据(structured data) 处理的Spark模块。 1、Hive on Spa…

维基百科数据抽取

1. 数据路径 https://dumps.wikimedia.org/enwiki/latest/ ----英文 https://dumps.wikimedia.org/zhwiki/latest/ ----中文 https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2 --下载最新的 https://dumps.wikimedia.org/wikidatawiki/2023…

公司招了个腾讯P7:闲聊后被我套出拿下35Koffer的面试技巧

早上一进公司就见人事热热闹闹的带人办入职手续,早之前听说公司将来一个腾讯离职的同事,薪资已达中上水平,大家都很好奇到底是怎样的人才,果不其然,让我们见识到什么是测试天花板 在新人见面会上,自动化、测…

web开发

目录 使用Idea搭建Web项目 使用Idea开发Web项目基本知识 tomcat配置信息 HTML /CSS 开发主页 Servlet 学习和掌握的内容: HTML/CSSServlet MVC模式和Web开发数据库基本应用和JDBC应用软件项目开发流程 环境及工具版本: Windows10,JDK1.8 Idea2…

【C++】基于范围的for循环 (C++11)

基于范围的for循环 C11 一、范围for的基本语法二、范围for中使用引用 &#xff08;一些奇葩的问题&#xff09;讨论三、范围for的使用条件一、范围for的基本语法 在C98中如果要遍历一个数组&#xff0c;可以按照以下方式进行&#xff1a; #include<iostream> using nam…

分享111个JS焦点图代码,总有一款适合您

分享111个JS焦点图代码&#xff0c;总有一款适合您 111个JS焦点图代码下载链接&#xff1a;https://pan.baidu.com/s/1GxjW5m9DNOPEQd-Qf_gGSA?pwd4aci 提取码&#xff1a;4aci Python采集代码下载链接&#xff1a;https://wwgn.lanzoul.com/iKGwb0kye3wj jQuery宽屏左右…

锦正茂EM3电磁铁的技术参数

产品特点&#xff1a; ※U形结构、视野开阔、磁场强度高、磁场强度大小调节方便 ※体积小、重量轻、占空比小、结构紧凑、磁场性能更佳 ※电磁铁的工作气隙调节轻便灵活&#xff0c;极头处设有螺纹&#xff0c;更换极头装卸方便 ※可选配工作间隙刻度指示 ※小气隙时用于铁…

代理模式(Proxy Pattern)

代理模式定义&#xff1a; 提供了对目标对象另外的访问方式&#xff1b;即通过代理对象访问目标对象。举个例子&#xff1a;猪八戒去找高翠兰结果是孙悟空变的&#xff0c;可以这样理解&#xff1a;把高翠兰的外貌抽象出来&#xff0c;高翠兰和孙悟空都实现了这个接口&#xff…

跨境电商选品重要吗?

选品很重要&#xff01;跨境电子商务选择的核心要求&#xff1a;优质商品&#xff0c;价格优势&#xff0c;符合跨境销售特点&#xff0c;满足目标海外市场需求&#xff0c;突出自身特色竞争优势。跨境电商是如何选择产品的&#xff1f;这个问题也很流行&#xff0c;应该考虑以…

面试-java Spring 一

一.Spring两大特性 控制反转(IoC)&#xff1a;就是创建对象的控制权&#xff0c;被反转到了Spring框架上。通常我们实例化一个对象时&#xff0c;都是使用类的构造方法来new一个对象&#xff0c;这个过程是由我们自己来控制的&#xff0c;而控制反转就把new对象的工交给了Spri…

加拿大访问学者家属如何办理探亲签证?

由于大多数访问学者的访学期限都为一年&#xff0c;家人来访不仅可以缓解访学的寂寞生活&#xff0c;而且也是家人到加拿大体验国外风情的好机会。家属在国内申请赴加签证时&#xff0c;如果材料齐全&#xff0c;一般上午递交了申请&#xff0c;下午就可以拿到签证。以下是家人…

mongo DB数据库bindIP的配置和我的理解(bindIP不是应用服务器的IP)

先批评这个文章&#xff01;典型的错误&#xff0c;bindIP根本不是绑定哪一个ip的 背景&#xff1a;最近在阿里云上搭建overleaf的web服务集群&#xff0c;数据库和应用服务器分离&#xff0c;一口气买了三台服务器准备开始干活。overleaf用的是mongodb&#xff0c;我本来准备…