⛄一、粒子群简介
1 粒子群优化算法
粒子群优化算法( PSO)是指通过模拟鸟群觅食的协作行为,实现群体最优化。PSO是一种并行计算的智能算法,其基本模型如下:
假设群体规模为M,在D维空间中,群体中的第i个个体表示为XD= ( xm1,xm2…xm D)T,速度表示为VD= ( vm1,vm2…vm D)T,位置( 代表在当前空间中搜索到的最佳点,即个体极值) 表示为PD= ( pm1,pm2…pm D)T,m = 1,2,…,M,将粒子个体的最小极值最为当前全局最优位置, 表示为Pg= ( pg1,pg2…pg D)T。速度与位置的更新公式[2]为:
式中: i = 1,2,…M; j为粒子的第j维; k为迭代次数; c1与c2为加速度常数,分别用于调节粒子自身最佳位置和全局最佳位置的步长,一般在0 ~ 2 之间取值; r1与r2为在[0,1]区间分别的随机函数。为了减少搜索空间的可能性,通常要给粒子的速度设定范围,即vij∈[Vmin,Vmax]。
粒子群优化算法的流程如下:
- 初始化。设置种群相关初始化参数,包括种群数目M、迭代次数T、粒子速度与位置、速度范围。
- 计算粒子适应度。
- 更新个体极值。如果当前适应度值优于上次的迭代的值,那么则将当前值作为新的个体极值。
- 更新种群极值。
- 更新粒子的速度与位置。
- 判断。若满足设定的结束条件,则进行下一步,若不满足,则返回到步骤2。
- 结束。
⛄二、部分源代码
clc;
clear;
tic;
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1] 包子阳,余继周,杨杉.智能优化算法及其MATLAB实例(第2版)[M].电子工业出版社,2016.
[2]张岩,吴水根.MATLAB优化算法源代码[M].清华大学出版社,2017.
[3]周品.MATLAB 神经网络设计与应用[M].清华大学出版社,2013.
[4]陈明.MATLAB神经网络原理与实例精解[M].清华大学出版社,2013.
[5]方清城.MATLAB R2016a神经网络设计与应用28个案例分析[M].清华大学出版社,2018.
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除