题目链接:https://leetcode.com/problems/validate-binary-search-tree/
1. 题目介绍(Validate Binary Search Tree)
Given the root of a binary tree, determine if it is a valid binary search tree (BST).
【Translate】: 给定二叉树的根,确定它是否是有效的二叉搜索树(BST)。
A valid BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node’s key.
- The right subtree of a node contains only nodes with keys greater than the node’s key.
- Both the left and right subtrees must also be binary search trees.
【Translate】: 有效的BST定义如下:
- 节点的左子树只包含键值小于该节点键值的节点。
- 节点的右子树只包含键值大于该节点键值的节点。
- 左子树和右子树都必须是二叉搜索树。
【测试用例】:
【条件约束】:
2. 题解
2.1 中序遍历栈
原题解来自于 issac3 的 Learn one iterative inorder traversal, apply it to multiple tree questions (Java Solution).
该题解的做法和 【LeetCode】No.94. Binary Tree Inorder Traversal – Java Version中实现中序遍历的代码基本一致,不同点是在于多了一个前后节点大小比较的过程。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean isValidBST(TreeNode root) {
if (root == null) return true;
Stack<TreeNode> stack = new Stack<>();
TreeNode pre = null;
while (root != null || !stack.isEmpty()) {
while (root != null) {
stack.push(root);
root = root.left;
}
root = stack.pop();
if(pre != null && root.val <= pre.val) return false;
pre = root;
root = root.right;
}
return true;
}
}
2.2 递归
原题解来自于 sruzic 的 My simple Java solution in 3 lines.
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean isValidBST(TreeNode root) {
return isValidBST(root, Long.MIN_VALUE, Long.MAX_VALUE);
}
public boolean isValidBST(TreeNode root, long minVal, long maxVal) {
if (root == null) return true;
if (root.val >= maxVal || root.val <= minVal) return false;
return isValidBST(root.left, minVal, root.val) && isValidBST(root.right, root.val, maxVal);
}
}