【深入浅出Java并发编程指南】「剖析篇」Fork/Join框架的实战开发和原理探究指南

news2025/2/24 12:32:50

前提概述

Java 7开始引入了一种新的Fork/Join线程池,它可以执行一种特殊的任务:把一个大任务拆成多个小任务并行执行。

我们举个例子:如果要计算一个超大数组的和,最简单的做法是用一个循环在一个线程内完成:

算法原理介绍

相信大家此前或多或少有了解到ForkJoin框架,ForkJoin框架其实就是一个线程池ExecutorService的实现,通过工作窃取(work-stealing)算法,获取其他线程中未完成的任务来执行。可以充分利用机器的多处理器优势,利用空闲的线程去并行快速完成一个可拆分为小任务的大任务,类似于分治算法

实现达成目标

  • ForkJoin的目标,就是利用所有可用的处理能力来提高程序的响应和性能。本文将介绍ForkJoin框架,依次介绍基础特性、案例使用、源码剖析和实现亮点。

  • java.util.concurrent.ForkJoinPool由Java大师Doug Lea主持编写,它可以将一个大的任务拆分成多个子任务进行并行处理,最后将子任务结果合并成最后的计算结果,并进行输出。

基本使用

入门例子,用Fork/Join框架使用示例,在这个示例中我们计算了1-5000累加后的值

public class TestForkAndJoinPlus {
    private static final Integer MAX = 400;
    static class WorkTask extends RecursiveTask<Integer> {
        // 子任务开始计算的值
        private Integer startValue;
        // 子任务结束计算的值
        private Integer endValue;
        public WorkTask(Integer startValue , Integer endValue) {
            this.startValue = startValue;
            this.endValue = endValue;
        }
        @Override
        protected Integer compute() {
            // 如果小于最小分片阈值,则说明要进行相关的数据操作
            // 可以正式进行累加计算了
            if(endValue - startValue < MAX) {
                System.out.println("开始计算的部分:startValue = " + startValue + ";endValue = " + endValue);
                Integer totalValue = 0;
                for(int index = this.startValue ; index <= this.endValue  ; index++) {
                    totalValue += index;
                }
                return totalValue;
            }
            // 否则再进行任务拆分,拆分成两个任务
            else {
                 // 因为采用二分法,拆分,所以进行1/2切分数据量
                WorkTask subTask1 = new WorkTask(startValue, (startValue + endValue) / 2);
                subTask1.fork();//进行拆分机制控制
                WorkTask subTask2 = new WorkTask((startValue + endValue) / 2 + 1 , endValue);
                subTask2.fork();
                return subTask1.join() + subTask2.join();
            }
        }
    }
    public static void main(String[] args) {
        // 这是Fork/Join框架的线程池
        ForkJoinPool pool = new ForkJoinPool();
        ForkJoinTask<Integer> taskFuture =  pool.submit(new MyForkJoinTask(1,1001));
        try {
            Integer result = taskFuture.get();
            System.out.println("result = " + result);
        } catch (InterruptedException | ExecutionException e) {
            e.printStackTrace(System.out);
        }
    }
}

对此我封装了一个框架集合,基于JDK1.8+中的Fork/Join框架实现,参考的Fork/Join框架主要源代码也基于JDK1.8+。

WorkTaskCallable实现抽象模型层次操作转换

@Accessors(chain = true)
public class WorkTaskCallable<T> extends RecursiveTask<T> {

    /**
     * 断言操作控制
     */
    @Getter
    private Predicate<T> predicate;

    /**
     * 执行参数化分割条件
     */
    @Getter
    private T splitParam;

    /**
     * 操作拆分方法操作机制
     */
    @Getter
    private Function<Object,Object[]> splitFunction;

    /**
     * 操作合并方法操作机制
     */
    @Getter
    private BiFunction<Object,Object,T> mergeFunction;

    /**
     * 操作处理机制
     */
    @Setter
    @Getter
    private Function<T,T> processHandler;


    /**
     * 构造器是否进行分割操作
     * @param predicate 判断是否进行下一步分割的条件关系
     * @param splitParam 分割参数
     * @param splitFunction 分割方法
     * @param mergeFunction 合并数据操作
     */
    public WorkTaskCallable(Predicate predicate,T splitParam,Function<Object,Object[]> splitFunction,BiFunction<Object,Object,T> mergeFunction,Function<T,T> processHandler){
        this.predicate = predicate;
        this.splitParam = splitParam;
        this.splitFunction = splitFunction;
        this.mergeFunction = mergeFunction;
        this.processHandler = processHandler;
    }

    /**
     * 实际执行调用操作机制
     * @return
     */
    @Override
    protected T compute() {
        if(predicate.test(splitParam)){
            Object[] result = splitFunction.apply(splitParam);
            WorkTaskCallable workTaskCallable1 = new WorkTaskCallable(predicate,result[0],splitFunction,mergeFunction,processHandler);
            workTaskCallable1.fork();
            WorkTaskCallable workTaskCallable2 = new WorkTaskCallable(predicate,result[1],splitFunction,mergeFunction,processHandler);
            workTaskCallable2.fork();
            return mergeFunction.apply(workTaskCallable1.join(),workTaskCallable2.join());
        }else{
            return processHandler.apply(splitParam);
        }
    }
}

ArrayListWorkTaskCallable实现List集合层次操作转换


/**
 * @project-name:wiz-shrding-framework
 * @package-name:com.wiz.sharding.framework.boot.common.thread.forkjoin
 * @author:LiBo/Alex
 * @create-date:2021-09-09 17:26
 * @copyright:libo-alex4java
 * @email:liboware@gmail.com
 * @description:
 */
public class ArrayListWorkTaskCallable extends WorkTaskCallable<List>{



    static Predicate<List> predicateFunction = param->param.size() > 3;


    static Function<List,List[]> splitFunction = (param)-> {
        if(predicateFunction.test(param)){
            return new List[]{param.subList(0,param.size()/ 2),param.subList(param.size()/2,param.size())};
        }else{
            return new List[]{param.subList(0,param.size()+1),Lists.newArrayList()};
        }
    };

    static BiFunction<List,List,List> mergeFunction = (param1,param2)->{
        List datalist = Lists.newArrayList();
        datalist.addAll(param2);
        datalist.addAll(param1);
        return datalist;
    };


    /**
     * 构造器是否进行分割操作
     * @param predicate     判断是否进行下一步分割的条件关系
     * @param splitParam    分割参数
     * @param splitFunction 分割方法
     * @param mergeFunction 合并数据操作
     */
    public ArrayListWorkTaskCallable(Predicate<List> predicate, List splitParam, Function splitFunction, BiFunction mergeFunction,
                                     Function<List,List> processHandler) {
        super(predicate, splitParam, splitFunction, mergeFunction,processHandler);
    }




    public ArrayListWorkTaskCallable(List splitParam, Function splitFunction, BiFunction mergeFunction,
                                     Function<List,List> processHandler) {
        super(predicateFunction, splitParam, splitFunction, mergeFunction,processHandler);
    }


    public ArrayListWorkTaskCallable(Predicate<List> predicate,List splitParam,Function<List,List> processHandler) {
        this(predicate, splitParam, splitFunction, mergeFunction,processHandler);
    }


    public ArrayListWorkTaskCallable(List splitParam,Function<List,List> processHandler) {
        this(predicateFunction, splitParam, splitFunction, mergeFunction,processHandler);
    }



    public static void main(String[] args){
        List dataList = Lists.newArrayList(0,1,2,3,4,5,6,7,8,9);
        ForkJoinPool forkJoinPool = ForkJoinPool.commonPool();
        ForkJoinTask<List> forkJoinResult = forkJoinPool.submit(new ArrayListWorkTaskCallable(dataList,param->Lists.newArrayList(param.size())));
        try {
            System.out.println(forkJoinResult.get());
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (ExecutionException e) {
            e.printStackTrace();
        }
    }

ForkJoin代码分析

ForkJoinPool构造函数
  /**
     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
     * java.lang.Runtime#availableProcessors}, using the {@linkplain
     * #defaultForkJoinWorkerThreadFactory default thread factory},
     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
     *
     * @throws SecurityException if a security manager exists and
     *         the caller is not permitted to modify threads
     *         because it does not hold {@link
     *         java.lang.RuntimePermission}{@code ("modifyThread")}
     */
    public ForkJoinPool() {
        this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
             defaultForkJoinWorkerThreadFactory, null, false);
    }

    /**
     * Creates a {@code ForkJoinPool} with the indicated parallelism
     * level, the {@linkplain
     * #defaultForkJoinWorkerThreadFactory default thread factory},
     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
     *
     * @param parallelism the parallelism level
     * @throws IllegalArgumentException if parallelism less than or
     *         equal to zero, or greater than implementation limit
     * @throws SecurityException if a security manager exists and
     *         the caller is not permitted to modify threads
     *         because it does not hold {@link
     *         java.lang.RuntimePermission}{@code ("modifyThread")}
     */
    public ForkJoinPool(int parallelism) {
        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
    }

    /**
     * Creates a {@code ForkJoinPool} with the given parameters.
     *
     * @param parallelism the parallelism level. For default value,
     * use {@link java.lang.Runtime#availableProcessors}.
     * @param factory the factory for creating new threads. For default value,
     * use {@link #defaultForkJoinWorkerThreadFactory}.
     * @param handler the handler for internal worker threads that
     * terminate due to unrecoverable errors encountered while executing
     * tasks. For default value, use {@code null}.
     * @param asyncMode if true,
     * establishes local first-in-first-out scheduling mode for forked
     * tasks that are never joined. This mode may be more appropriate
     * than default locally stack-based mode in applications in which
     * worker threads only process event-style asynchronous tasks.
     * For default value, use {@code false}.
     * @throws IllegalArgumentException if parallelism less than or
     *         equal to zero, or greater than implementation limit
     * @throws NullPointerException if the factory is null
     * @throws SecurityException if a security manager exists and
     *         the caller is not permitted to modify threads
     *         because it does not hold {@link
     *         java.lang.RuntimePermission}{@code ("modifyThread")}
     */
    public ForkJoinPool(int parallelism,
                        ForkJoinWorkerThreadFactory factory,
                        UncaughtExceptionHandler handler,
                        boolean asyncMode) {
        this(checkParallelism(parallelism),
             checkFactory(factory),
             handler,
             (asyncMode ? FIFO_QUEUE : LIFO_QUEUE),
             "ForkJoinPool-" + nextPoolId() + "-worker-");
        checkPermission();
    }

    /**
     * Creates a {@code ForkJoinPool} with the given parameters, without
     * any security checks or parameter validation.  Invoked directly by
     * makeCommonPool.
     */
    private ForkJoinPool(int parallelism,
                         ForkJoinWorkerThreadFactory factory,
                         UncaughtExceptionHandler handler,
                         int mode,
                         String workerNamePrefix) {
        this.workerNamePrefix = workerNamePrefix;
        this.factory = factory;
        this.ueh = handler;
        this.mode = (short)mode;
        this.parallelism = (short)parallelism;
        long np = (long)(-parallelism); // offset ctl counts
        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
    }
  • parallelism:可并行级别,Fork/Join框架将依据这个并行级别的设定,决定框架内并行执行的线程数量。并行的每一个任务都会有一个线程进行处理,但是千万不要将这个属性理解成Fork/Join框架中最多存在的线程数量。

  • factory:当Fork/Join框架创建一个新的线程时,同样会用到线程创建工厂。只不过这个线程工厂不再需要实现ThreadFactory接口,而是需要实现ForkJoinWorkerThreadFactory接口。后者是一个函数式接口,只需要实现一个名叫newThread的方法。

在Fork/Join框架中有一个默认的ForkJoinWorkerThreadFactory接口实现:DefaultForkJoinWorkerThreadFactory。

  • handler:异常捕获处理器。当执行的任务中出现异常,并从任务中被抛出时,就会被handler捕获。

  • asyncMode:这个参数也非常重要,从字面意思来看是指的异步模式,它并不是说Fork/Join框架是采用同步模式还是采用异步模式工作。Fork/Join框架中为每一个独立工作的线程准备了对应的待执行任务队列,这个任务队列是使用数组进行组合的双向队列。即是说存在于队列中的待执行任务,即可以使用先进先出的工作模式,也可以使用后进先出的工作模式。

    • 先进先出

    • 后进先出

    • 当asyncMode设置为true的时候,队列采用先进先出方式工作;反之则是采用后进先出的方式工作,该值默认为false

      • asyncMode ? FIFO_QUEUE : LIFO_QUEUE,

需要注意点

  • ForkJoinPool 一个构造函数只带有parallelism参数,既是可以设定Fork/Join框架的最大并行任务数量;另一个构造函数则不带有任何参数,对于最大并行任务数量也只是一个默认值——当前操作系统可以使用的CPU内核数量(Runtime.getRuntime().availableProcessors())。实际上ForkJoinPool还有一个私有的、原生构造函数,之上提到的三个构造函数都是对这个私有的、原生构造函数的调用。

  • 如果你对Fork/Join框架没有特定的执行要求,可以直接使用不带有任何参数的构造函数。也就是说推荐基于当前操作系统可以使用的CPU内核数作为Fork/Join框架内最大并行任务数量,这样可以保证CPU在处理并行任务时,尽量少发生任务线程间的运行状态切换(实际上单个CPU内核上的线程间状态切换基本上无法避免,因为操作系统同时运行多个线程和多个进程)。


  • 从上面的的类关系图可以看出来,ForkJoin框架的核心是ForkJoinPool类,基于AbstractExecutorService扩展(@sun.misc.Contended注解)。

  • ForkJoinPool中维护了一个队列数组WorkQueue[],每个WorkQueue维护一个ForkJoinTask数组和当前工作线程。ForkJoinPool实现了工作窃取(work-stealing)算法并执行ForkJoinTask。

ForkJoinPool类的属性介绍
  • ADD_WORKER: 100000000000000000000000000000000000000000000000 -> 1000 0000 0000 0000,用来配合ctl在控制线程数量时使用

  • ctl: 控制ForkJoinPool创建线程数量,(ctl & ADD_WORKER) != 0L 时创建线程,也就是当ctl的第16位不为0时,可以继续创建线程

  • defaultForkJoinWorkerThreadFactory: 默认线程工厂,默认实现是DefaultForkJoinWorkerThreadFactory

  • runState: 全局锁控制,全局运行状态

  • workQueues: 工作队列数组WorkQueue[]

  • config: 记录并行数量和ForkJoinPool的模式(异步或同步)

WorkQueue类
  • qlock: 并发控制,put任务时的锁控制

  • array: 任务数组ForkJoinTask<?>[]

  • pool: ForkJoinPool,所有线程和WorkQueue共享,用于工作窃取、任务状态和工作状态同步

  • base: array数组中取任务的下标

  • top: array数组中放置任务的下标

  • owner: 所属线程,ForkJoin框架中,只有一个WorkQueue是没有owner的,其他的均有具体线程owner


ForkJoinTask是能够在ForkJoinPool中执行的任务抽象类,父类是Future,具体实现类有很多,这里主要关注RecursiveAction和RecursiveTask。

  • RecursiveAction是没有返回结果的任务
  • RecursiveTask是需要返回结果的任务。
ForkJoinTask类属性的介绍

status: 任务的状态,对其他工作线程和pool可见,运行正常则status为负数,异常情况为正数。

ForkJoinTask功能介绍
  • ForkJoinTask任务是一种能在Fork/Join框架中运行的特定任务,也只有这种类型的任务可以在Fork/Join框架中被拆分运行和合并运行。

  • ForkJoinWorkerThread线程是一种在Fork/Join框架中运行的特性线程,它除了具有普通线程的特性外,最主要的特点是每一个ForkJoinWorkerThread线程都具有一个独立的任务等待队列(work queue),这个任务队列用于存储在本线程中被拆分的若干子任务。


只需要实现其compute()方法,在compute()中做最小任务控制,任务分解(fork)和结果合并(join)。

ForkJoinPool中执行的默认线程是ForkJoinWorkerThread,由默认工厂产生,可以自己重写要实现的工作线程。同时会将ForkJoinPool引用放在每个工作线程中,供工作窃取时使用。

ForkJoinWorkerThread类属性介绍
  • pool: ForkJoinPool,所有线程和WorkQueue共享,用于工作窃取、任务状态和工作状态同步。
  • workQueue: 当前线程的任务队列,与WorkQueue的owner呼应。

简易执行图

实际上Fork/Join框架的内部工作过程要比这张图复杂得多,例如如何决定某一个recursive task是使用哪条线程进行运行;再例如如何决定当一个任务/子任务提交到Fork/Join框架内部后,是创建一个新的线程去运行还是让它进行队列等待。

逻辑模型图(盗一张图:)

盗一张图:()

fork方法和join方法

Fork/Join框架中提供的fork方法和join方法,可以说是该框架中提供的最重要的两个方法,它们和parallelism“可并行任务数量”配合工作。

Fork方法介绍
  • Fork就是一个不断分枝的过程,在当前任务的基础上长出n多个子任务,他将新创建的子任务放入当前线程的work queue队列中,Fork/Join框架将根据当前正在并发执行ForkJoinTask任务的ForkJoinWorkerThread线程状态,决定是让这个任务在队列中等待,还是创建一个新的ForkJoinWorkerThread线程运行它,又或者是唤起其它正在等待任务的ForkJoinWorkerThread线程运行它。

当一个ForkJoinTask任务调用fork()方法时,当前线程会把这个任务放入到queue数组的queueTop位置,然后执行以下两句代码:

if ((s -= queueBase) <= 2)
    pool.signalWork();
else if (s == m)
    growQueue();

当调用signalWork()方法。signalWork()方法做了两件事:1、唤配当前线程;2、当没有活动线程时或者线程数较少时,添加新的线程。


Join方法介绍

Join是一个不断等待,获取任务执行结果的过程。

private int doJoin() {
    Thread t; ForkJoinWorkerThread w; int s; boolean completed;
    if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) {
        if ((s = status) < 0)
            return s;
        if ((w = (ForkJoinWorkerThread)t).unpushTask(this)) {
            try {
                completed = exec();
            } catch (Throwable rex) {
                return setExceptionalCompletion(rex);
            }
            if (completed)
                return setCompletion(NORMAL);
        }
        return w.joinTask(this);
    }
    else
        return externalAwaitDone();
}
  • 第4行,(s=status)<0表示这个任务被执行完,直接返回执行结果状态,上层捕获到状态后,决定是要获取结果还是进行错误处理;
  • 第6行,从queue中取出这个任务来执行,如果执行完了,就设置状态为NORMAL;
  • 前面unpushTask()方法在队列中没有这个任务时会返回false,15行调用joinTask等待这个任务完成。
  • 由于ForkJoinPool中有一个数组叫submissionQueue,通过submit方法调用而且非ForkJoinTask这种任务会被放到这个队列中。这种任务有可能被非ForkJoinWorkerThread线程执行,第18行表示如果是这种任务,等待它执行完成。
    下面来看joinTask方法
final int joinTask(ForkJoinTask<?> joinMe) {
    ForkJoinTask<?> prevJoin = currentJoin;
    currentJoin = joinMe;
    for (int s, retries = MAX_HELP;;) {
        if ((s = joinMe.status) < 0) {
            currentJoin = prevJoin;
            return s;
        }
        if (retries > 0) {
            if (queueTop != queueBase) {
                if (!localHelpJoinTask(joinMe))
                    retries = 0;           // cannot help
            }
            else if (retries == MAX_HELP >>> 1) {
                --retries;                 // check uncommon case
                if (tryDeqAndExec(joinMe) >= 0)
                    Thread.yield();        // for politeness
            }
            else
                retries = helpJoinTask(joinMe) ? MAX_HELP : retries - 1;
        }
        else {
            retries = MAX_HELP;           // restart if not done
            pool.tryAwaitJoin(joinMe);
        }
    }
}
  • (1)这里有个常量MAX_HELP=16,表示帮助join的次数。第11行,queueTop!=queueBase表示本地队列中有任务,如果这个任务刚好在队首,则尝试自己执行;否则返回false。这时retries被设置为0,表示不能帮助,因为自已队列不为空,自己并不空闲。在下一次循环就会进入第24行,等待这个任务执行完成。
  • (2)第20行helpJoinTask()方法返回false时,retries-1,连续8次都没有帮到忙,就会进入第14行,调用yield让权等待。没办法人口太差,想做点好事都不行,只有停下来休息一下。
  • (3)当执行到第20行,表示自己队列为空,可以去帮助这个任务了,下面来看是怎么帮助的?
outer:for (ForkJoinWorkerThread thread = this;;) {
    // Try to find v, the stealer of task, by first using hint
    ForkJoinWorkerThread v = ws[thread.stealHint & m];
    if (v == null || v.currentSteal != task) {
        for (int j = 0; ;) {        // search array
            if ((v = ws[j]) != null && v.currentSteal == task) {
                thread.stealHint = j;
                break;              // save hint for next time
            }
            if (++j > m)
                break outer;        // can't find stealer
        }
    }
    // Try to help v, using specialized form of deqTask
    for (;;) {
        ForkJoinTask<?>[] q; int b, i;
        if (joinMe.status < 0)
            break outer;
        if ((b = v.queueBase) == v.queueTop ||
            (q = v.queue) == null ||
            (i = (q.length-1) & b) < 0)
            break;                  // empty
        long u = (i << ASHIFT) + ABASE;
        ForkJoinTask<?> t = q[i];
        if (task.status < 0)
            break outer;            // stale
        if (t != null && v.queueBase == b &&
            UNSAFE.compareAndSwapObject(q, u, t, null)) {
            v.queueBase = b + 1;
            v.stealHint = poolIndex;
            ForkJoinTask<?> ps = currentSteal;
            currentSteal = t;
            t.doExec();
            currentSteal = ps;
            helped = true;
        }
    }
    // Try to descend to find v's stealer
    ForkJoinTask<?> next = v.currentJoin;
    if (--levels > 0 && task.status >= 0 &&
        next != null && next != task) {
        task = next;
        thread = v;
    }
}
  • (1)通过查看stealHint这个字段的注释可以知道,它表示最近一次谁来偷过我的queue中的任务。因此通过stealHint并不能找到当前任务被谁偷了?所以第4行v.currentSteal != task完全可能。这时还有一个办法找到这个任务被谁偷了,看看currentSteal这个字段的注释表示最近偷的哪个任务。这里扫描所有偷来的任务与当前任务比较,如果相等,就是这个线程偷的。如果这两种方法都不能找到小偷,只能等待了。
  • (2)当找到了小偷后,以其人之身还之其人之道,从小偷那里偷任务过来,相当于你和小偷共同执行你的任务,会加速你的任务完成。
  • (3)小偷也是爷,如果小偷也在等待一个任务完成,权利反转(小偷等待的这个任务做为当前任务,小偷扮演当事人角色把前面的流程走一遍),这是一个递归的过程。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/28676.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

使用Typora+EasyBlogImageForTypora写博客,无图床快速上传图片

Typora下载 Typora以前都是免费的&#xff0c;自去年开始竟然要收费&#x1f914;&#xff08;不过也能理解&#xff0c;毕竟真心好用&#x1f60a;&#xff09;&#xff0c;在这里给大家提供的是免费的版本&#xff08;免安装&#xff0c;下载即可使用&#xff09;&#xff0…

【密码学篇】(商密)密码算法分析理论知识

【密码学篇】&#xff08;商密&#xff09;密码算法分析理论知识 密码算法分析理论—【蘇小沐】 文章目录【密码学篇】&#xff08;商密&#xff09;密码算法分析理论知识&#xff08;一&#xff09;密码系统安全性1.实际安全性2.无条件安全性&#xff08;二&#xff09;密码算…

干货丨如何开启TiDB集群中的节点通信加密?

笔者在一个银行项目中&#xff0c;费尽千辛万苦&#xff0c;好不容易通过PoC测试。 就当一切就绪&#xff0c;准备正式上线时&#xff0c;突然传来了噩耗&#xff1a;未通过银行内部的漏洞扫描&#xff0c;发现存在高危漏洞&#xff0c;需要马上进行修复。 这可给我吓坏了&am…

Vue-axios的get、post请求

直接在控制台上打印axios会报错&#xff0c;打印fetch就不会&#xff1b; 因为fetch是标准&#xff0c;axios是第三方&#xff0c;要想用axios&#xff0c;就必须引入想应的js文件&#xff1b;axios-js文件下载&#xff1a;npm 搜索axios&#xff0c;点进去&#xff0c;往下找&…

智云通CRM:如何清除销售前被拒绝的怀疑和猜测?

在做CRM销售时&#xff0c;经常遇到被客户拒绝的情况&#xff0c;没有人喜欢被拒绝&#xff0c;因为拒绝辉让人痛苦、难过&#xff0c;但现实中又无法避免被拒绝&#xff0c;尤其是销售人员&#xff0c;对销售人员来说&#xff0c;被拒绝是家常便饭。遭到拒绝后&#xff0c;经常…

基于51单片机pwm调光护眼台灯智能检测光强光控灯设计proteus仿真原理图PCB

功能&#xff1a; 0.本系统采用STC89C52作为单片机 1.LCD1602液晶实时显示当前时间/模式/亮度等级 2.按’切换’键可切换四种不同的模式 a) 自动开关&#xff0c;自动调节亮度 b) 手动开关&#xff0c;自动调节亮度 c) 自动开关&#xff0c;手动调节亮度 d) 手动开关&#xff0…

arthas诊断工具

1.安装 linux: curl -o https://alibaba.github.io/arthas/arthas-boot.jar //是O不是零 浏览直接访问https://alibaba.github.io/arthas/arthas-boot.jar 在运行程序之前,需要运行一个java进程在内存种 java -jar arthas-boot.jar 按序号选择诊断的进程 选择序号回车 2.卸载…

​生成图片并添加文字Image.new()与ImageDraw.drawer.text()方法​

【小白从小学Python、C、Java】 【计算机等级考试500强双证书】 【Python-数据分析】 生成图片并添加文字 Image.new()与ImageDraw.drawer.text()方法 [太阳]选择题 以下python代码表述错误的一项是? from PIL import Image,ImageDraw,ImageFont imgImage.new(modeRGB,…

计算机网络第六章知识点回顾(自顶向下)

第六章知识点回顾1.链路层和局域网1.1网络层、链路层和物理层1.2链路层服务1.3链路层在哪儿实现&#xff1f;1.3.1网络适配器之间的通信1.4检错和纠错1.5如何检测与纠正错误&#xff1f;1.5.1编码集的检错与纠错能力1.5.2差错检测的实施1.5.3奇偶校验1.5.4循环冗余校验&#xf…

图像分割 - 区域生长

目录 1. 介绍 2. 代码详解 3. 代码 1. 介绍 分割的目的是将图像分为多个区域 常用的分割方法基于两个属性&#xff1a;不同区域间的灰度不连续性质&#xff08;Canny边缘检测等等&#xff09;、相同区域灰度的相似特征&#xff08;阈值处理、区域生长等等&#xff09; 区…

牛客网语法篇练习基础语法(一)

1.输出"Hello Nowcoder!"。开始你的编程之旅吧。 print(Hello Nowcoder!) 2.KiKi学会了print在屏幕输出信息&#xff0c;他想输出一架小飞机。请帮他编写程序输出这架小飞机。 print( *5 ** *5) print( *5 ** *5) print(**12) print(**12) print( *4 * * *4) prin…

Arduino操作MPU6050模块

MPU6050是集成三轴陀螺仪&#xff0c;三轴加速度计&#xff0c;温度传感器于一体的模块。本文档基于Adafruit_MPU6050实现MPU6050模块基本操作。 Adafruit_MPU6050库&#xff1a; https://github.com/adafruit/Adafruit_MPU6050 Adafruit_MPU6050依赖以下库&#xff0c;需要在…

Java中的char、Character和CharSequence的区别

char 与 Character char是一种基本的数据类型&#xff0c;Character是char类型的包装类&#xff0c;即通过Character创建出来的是一种对象。 Character是char的包装类&#xff0c;就像Integer和int&#xff0c;以及Long和long一样。 包装类和基本类型可以自动转换&#xff…

安泰测试-同惠TH2827精密LCR数字电桥产品性能特点

同惠(Tonghui)TH2827A/TH2827B/TH2827C型 LCR数字电桥 产品简介&#xff1a; TH2827A/TH2827B/TH2827C是具有多种功能和更高测试频率的新型LCR数字电桥&#xff0c;体积小&#xff0c;紧凑便携&#xff0c;便于上架使用。本系列仪器基本精度为0.05%&#xff0c;测试频率最高1M…

GitLab仓库管理系统安装详细步骤

前言 本案例安装 gitlab、jenkins、并部署springboot应用程序&#xff0c;所以准备了3台服务器。 服务器1&#xff1a;安装gitlab服务器2&#xff1a;安装jdk、maven、git、jenkins 因为jenkins需要jdk、maven、git服务器3&#xff1a;安装jdk。 jenkins自动部署的springboot…

多目标优化生态调度结果的预测方法研究——基于新蝙蝠算法(Matlab代码实现)

&#x1f352;&#x1f352;&#x1f352;欢迎关注&#x1f308;&#x1f308;&#x1f308; &#x1f4dd;个人主页&#xff1a;我爱Matlab &#x1f44d;点赞➕评论➕收藏 养成习惯&#xff08;一键三连&#xff09;&#x1f33b;&#x1f33b;&#x1f33b; &#x1f34c;希…

【CNN】ZFNet——让卷积神经网络不再是一个黑盒模型。

前言 ZFNet在2013年 ILSVRC 图像分类竞赛获得冠军&#xff0c;错误率11.19% &#xff0c;比2012年的AlexNet降低了5%&#xff0c;ZFNet是由 Matthew D.Zeiler 和 Rob Fergus 在 AlexNet 基础上提出的大型卷积网络。ZFNet解释了为什么卷积神经网络可以在图像分类上表现的如此出…

[MySQL]事务ACID详解

专栏简介 :MySql数据库从入门到进阶. 题目来源:leetcode,牛客,剑指offer. 创作目标:记录学习MySql学习历程 希望在提升自己的同时,帮助他人,,与大家一起共同进步,互相成长. 学历代表过去,能力代表现在,学习能力代表未来! 目录 1. 事务的概念 2. 事务的特性 3.事务控制语法…

【经验篇】Java使用ZMQ断线重连问题

简介 ZeroMQ是一个高性能的异步消息传递库&#xff0c;旨在用于分布式或者并发应用程序。它提供了一个消息队列&#xff0c;但与面向消息的中间件不同&#xff0c;ZeroMQ 系统可以在没有专用消息代理的情况下运行。 ZeroMQ 支持各种传输&#xff08;TCP、进程内、进程间、多播…

初步认识端口服务查询--netstat

转载连接&#xff1a;netstat详解 目录1、语法与参数概括2、输出释义2.1 以netstat -atnlp为例&#xff0c;解释输出结果中各列的含义2.2、以netstat -rn为例&#xff0c;解释输出结果中各列的含义3、实用命令4、项目中通过netstat查询某端口是否被占用netstat命令是一个监控TC…