基于PaddleOCR的集装箱箱号检测识别

news2025/1/19 22:28:10

基于PaddleOCR的集装箱箱号检测识别

项目背景

国际航运咨询分析机构 Alphaliner 在今年 3 月公布的一组数据,2021 年集装箱吞吐量排名前 30 的榜单中,上海港以 4702.5 万标箱的「成绩单」雄踞鳌头。

Image

较上一年同期,上海港集装箱吞吐量增长 8.1%

与最近的竞争对手新加坡拉开了近 1000 万标准箱的差距

全球百大集装箱港口,更是在 2021 年共完成集装箱吞吐量 6.76 亿 TEU。**如此大规模的集装箱数量,使得箱号识别的压力骤增,**传统的由人对集装箱号进行识别记录的方式成本高、效率低,运营条件落后。

随着经济和社会的发展,在港口经营中引入人工智能,已经成为传统港口在市场竞争中蜕变升维的关键。

于是希望从环境准备到模型训练,演示如何借助 PaddleOCR,进行集装箱箱号检测识别。

一、项目介绍:用少量数据实现箱号检测识别任务

集装箱号是指装运出口货物集装箱的箱号,填写托运单时必填此项。标准箱号的构成采用ISO6346 (1995) 标准,由 11 位编码组成,以箱号 CBHU 123456 7 为例,它包括 3 个部分:

第一部分由 4 个英文字母组成,前 3 个字母表示箱主、经营人,第 4 个字母表示集装箱类型。CBHU 表示箱主和经营人为中远集运的标准集装箱。

第二部分由 6 位数字组成,表示箱体注册码,是集装箱箱体持有的唯一标识。

第三部分为校验码,由前面 4 个字母和 6 位数字经过校验规则运算得到,用于识别在校验时是否发生错误。

Image

堆积在港口等待运输的集装箱

这是一个基于PaddleOCR进行集装箱箱号检测识别任务,使用少量数据分别训练检测、识别模型,最后将他们串联在一起实现集装箱箱号检测识别的任务

二、环境准备

首先我们肯定是需要安装paddlepaddle的,这个paddle安装还是比较容易的,只需要以下代码,但是如果想要GPU版本,在他们的官网也是有介绍如何安装的,我这里下的是2.3的版本,因为也比较稳定,paddle安装参考 https://www.paddlepaddle.org.cn/install/quick

CPU版本

python -m pip install paddlepaddle==2.3.2 -i https://pypi.tuna.tsinghua.edu.cn/simple

GPU版本

利用conda安装

conda install paddlepaddle-gpu==2.3.2 cudatoolkit=11.6 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/Paddle/ -c conda-forge 

除此之外,我们是利用PaddleOCR做实验的,所以我们还需要下载下来PaddleOCR的源码,这个也是很容易的,可以在github中下载,我这里下载的是2.6的版本,可以通过git clone下载一下我们的文件

git clone https://github.com/PaddlePaddle/PaddleOCR.git

或者上github下载PaddleOCR的全部代码 https://github.com/PaddlePaddle/PaddleOCR

最后我们就进入我们的文件夹了,并且安装所有的依赖

  • 进入PaddleOCR文件夹
cd PaddleOCR
  • 安装PaddleOCR
!pip install -r requirements.txt #安装PaddleOCR所需依赖
  • 安装完毕返回上层文件夹
cd ..

三、数据集介绍

本教程所使用的集装箱箱号数据集,该数据包含3003张分辨率为1920×1080的集装箱图像

1、PaddleOCR检测模型训练标注规则如下,中间用"\t"分隔:

" 图像文件名                    json.dumps编码的图像标注信息"
ch4_test_images/img_61.jpg    [{"transcription": "MASA", "points": [[310, 104], [416, 141], [418, 216], [312, 179]]}, {...}]

其中json.dumps编码前的图像标注信息是包含多个字典的list,字典中的 points 表示文本框的四个点的坐标(x, y),从左上角的点开始顺时针排列。 transcription 表示当前文本框的文字,当其内容为“###”时,表示该文本框无效,在训练时会跳过。

2、PaddleOCR识别模型训练标注规则如下,中间用"\t"分隔:

" 图像文件名                 图像标注信息 "

train_data/rec/train/word_001.jpg   简单可依赖
train_data/rec/train/word_002.jpg   用科技让复杂的世界更简单

四、数据整理

4.1 检测模型所需数据准备

将数据集3000张图片按2:1划分成训练集和验证集,运行以下代码

from tqdm import tqdm
finename = "all_label.txt"
f = open(finename)
lines = f.readlines() 
t = open('det_train_label.txt','w')
v = open('det_eval_label.txt','w')
count = 0
for line in tqdm(lines):
    if count < 2000:
        t.writelines(line)
        count += 1
    else:
        v.writelines(line)
f.close()
t.close()
v.close()
100%|██████████| 3003/3003 [00:00<00:00, 56103.65it/s]

4.2 识别模型所需数据准备

我们根据检测部分的注释,裁剪数据集尽可能只包含文字部分图片作为识别的数据,运行以下代码

from PIL import Image
import json
from tqdm import tqdm
import os
import numpy as np
import cv2
import math

from PIL import Image, ImageDraw

class Rotate(object):

    def __init__(self, image: Image.Image, coordinate):
        self.image = image.convert('RGB')
        self.coordinate = coordinate
        self.xy = [tuple(self.coordinate[k]) for k in ['left_top', 'right_top', 'right_bottom', 'left_bottom']]
        self._mask = None
        self.image.putalpha(self.mask)

    @property
    def mask(self):
        if not self._mask:
            mask = Image.new('L', self.image.size, 0)
            draw = ImageDraw.Draw(mask, 'L')
            draw.polygon(self.xy, fill=255)
            self._mask = mask
        return self._mask

    def run(self):
        image = self.rotation_angle()
        box = image.getbbox()
        return image.crop(box)

    def rotation_angle(self):
        x1, y1 = self.xy[0]
        x2, y2 = self.xy[1]
        angle = self.angle([x1, y1, x2, y2], [0, 0, 10, 0]) * -1
        return self.image.rotate(angle, expand=True)

    def angle(self, v1, v2):
        dx1 = v1[2] - v1[0]
        dy1 = v1[3] - v1[1]
        dx2 = v2[2] - v2[0]
        dy2 = v2[3] - v2[1]
        angle1 = math.atan2(dy1, dx1)
        angle1 = int(angle1 * 180 / math.pi)
        angle2 = math.atan2(dy2, dx2)
        angle2 = int(angle2 * 180 / math.pi)
        if angle1 * angle2 >= 0:
            included_angle = abs(angle1 - angle2)
        else:
            included_angle = abs(angle1) + abs(angle2)
            if included_angle > 180:
                included_angle = 360 - included_angle
        return included_angle



def image_cut_save(path, bbox, save_path):
    """
    :param path: 图片路径
    :param left: 区块左上角位置的像素点离图片左边界的距离
    :param upper:区块左上角位置的像素点离图片上边界的距离
    :param right:区块右下角位置的像素点离图片左边界的距离
    :param lower:区块右下角位置的像素点离图片上边界的距离
    """
    img_width  = 1920
    img_height = 1080
    img = Image.open(path)
    coordinate = {'left_top': bbox[0], 'right_top': bbox[1], 'right_bottom': bbox[2], 'left_bottom': bbox[3]}
    rotate = Rotate(img, coordinate)
    
    left, upper = bbox[0]
    right, lower = bbox[2]
    if lower-upper > right-left:
        rotate.run().convert('RGB').transpose(Image.ROTATE_90).save(save_path)
    else:
        rotate.run().convert('RGB').save(save_path)
    return True

#读取检测标注制作识别数据集
files = ["det_train_label.txt","det_eval_label.txt"]
filetypes =["train","eval"]
for index,filename in enumerate(files):
    f = open(filename)
    l = open('rec_'+filetypes[index]+'_label.txt','w')
    if index == 0:
        data_dir = "RecTrainData"
    else:
        data_dir = "RecEvalData"
    if not os.path.exists(data_dir):
        os.mkdir(data_dir)
    lines = f.readlines() 
    for line in tqdm(lines):
        image_name = line.split("\t")[0].split("/")[-1]
        annos = json.loads(line.split("\t")[-1])
        img_path = os.path.join("./dataset/images",image_name)
        for i,anno in enumerate(annos):
            data_path = os.path.join(data_dir,str(i)+"_"+image_name)
            if image_cut_save(img_path,anno["points"],data_path):
                l.writelines(str(i)+"_"+image_name+"\t"+anno["transcription"]+"\n")
    l.close()
    f.close()
  0%|          | 2/2000 [00:00<02:13, 14.98it/s]/tmp/ipykernel_250961/282371847.py:76: DeprecationWarning: ROTATE_90 is deprecated and will be removed in Pillow 10 (2023-07-01). Use Transpose.ROTATE_90 instead.
  rotate.run().convert('RGB').transpose(Image.ROTATE_90).save(save_path)
100%|██████████| 2000/2000 [01:02<00:00, 32.15it/s]
100%|██████████| 1003/1003 [00:29<00:00, 33.76it/s]

五、实验

由于数据集比较少,为了模型更好和更快的收敛,这里选用 PaddleOCR 中的 PP-OCRv3 模型进行检测和识别。PP-OCRv3在PP-OCRv2的基础上,中文场景端到端Hmean指标相比于PP-OCRv2提升5%, 英文数字模型端到端效果提升11%。详细优化细节请参考PP-OCRv3技术报告。

问你也可以看到各个模型的列表 https://github.com/PaddlePaddle/PaddleOCR/blob/v2.6.0/doc/doc_ch/models_list.md. 包括后面所有的模型都是从里面下载下来的

import os
os.environ['CUDA_VISIBLE_DEVICES'] = '1' # 选择GPU运行,比如我这里使用1号GPU运行

5.1 检测模型

5.1.1 检测模型配置

PaddleOCR提供了许多检测模型,在路径PaddleOCR/configs/det下可找到模型及其配置文件。如我们选用模型ch_PP-OCRv3_det_student.yml,其配置文件路径在:PaddleOCR/configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_student.yml。使用前需对其进行必要的设置,如训练参数、数据集路径等。然后设置以下重要的参数部分,将部分关键配置展示如下:

#关键训练参数
use_gpu: true # 是否使用显卡GPU
epoch_num: 50 # 训练epoch个数

save_model_dir: ./output/ch_PP-OCR_V3_det/ #模型保存路径
save_epoch_step: 100 # 每训练100step,保存一次模型
eval_batch_step:
  - 0
  - 200 #训练每迭代400次,进行一次验证
pretrained_model: ./PaddleOCR/pretrained_model/ch_PP-OCRv3_det_distill_train/student.pdparams # 预训练模型路径
#训练集路径设置
Train:
  dataset:
    name: SimpleDataSet
    data_dir: ./dataset/images #图片文件夹路径
    label_file_list:
      - ./det_train_label.txt #标签路径
# 同时也需要设置验证集
Eval:
  dataset:
    name: SimpleDataSet
    data_dir: ./dataset/images
    label_file_list:
      - ./det_eval_label.txt
  loader:
    shuffle: true
    drop_last: false
    batch_size_per_card: 8 # 每张卡所占的batchsize,如果在训练过程中显存超限,可以把batch size调小一点

5.1.2 模型微调

在notebook中运行如下命令对模型进行微调,其中 -c 传入的为配置好的模型文件路径

!python PaddleOCR/tools/train.py -c PaddleOCR/configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_student.yml
[2022/11/22 13:06:21] ppocr INFO: Architecture : 
[2022/11/22 13:06:21] ppocr INFO:     Backbone : 
[2022/11/22 13:06:21] ppocr INFO:         disable_se : True
[2022/11/22 13:06:21] ppocr INFO:         model_name : large
[2022/11/22 13:06:21] ppocr INFO:         name : MobileNetV3
[2022/11/22 13:06:21] ppocr INFO:         scale : 0.5
[2022/11/22 13:06:21] ppocr INFO:     Head : 
[2022/11/22 13:06:21] ppocr INFO:         k : 50
[2022/11/22 13:06:21] ppocr INFO:         name : DBHead
[2022/11/22 13:06:21] ppocr INFO:     Neck : 
[2022/11/22 13:06:21] ppocr INFO:         name : RSEFPN
[2022/11/22 13:06:21] ppocr INFO:         out_channels : 96
[2022/11/22 13:06:21] ppocr INFO:         shortcut : True
[2022/11/22 13:06:21] ppocr INFO:     Transform : None
[2022/11/22 13:06:21] ppocr INFO:     algorithm : DB
[2022/11/22 13:06:21] ppocr INFO:     model_type : det
[2022/11/22 13:06:21] ppocr INFO: Eval : 
[2022/11/22 13:06:21] ppocr INFO:     dataset : 
[2022/11/22 13:06:21] ppocr INFO:         data_dir : ./dataset/images
[2022/11/22 13:06:21] ppocr INFO:         label_file_list : ['./det_eval_label.txt']
[2022/11/22 13:06:21] ppocr INFO:         name : SimpleDataSet
[2022/11/22 13:06:21] ppocr INFO:         transforms : 
[2022/11/22 13:06:21] ppocr INFO:             DecodeImage : 
[2022/11/22 13:06:21] ppocr INFO:                 channel_first : False
[2022/11/22 13:06:21] ppocr INFO:                 img_mode : BGR
[2022/11/22 13:06:21] ppocr INFO:             DetLabelEncode : None
[2022/11/22 13:06:21] ppocr INFO:             DetResizeForTest : None
[2022/11/22 13:06:21] ppocr INFO:             NormalizeImage : 
[2022/11/22 13:06:21] ppocr INFO:                 mean : [0.485, 0.456, 0.406]
[2022/11/22 13:06:21] ppocr INFO:                 order : hwc
[2022/11/22 13:06:21] ppocr INFO:                 scale : 1./255.
[2022/11/22 13:06:21] ppocr INFO:                 std : [0.229, 0.224, 0.225]
[2022/11/22 13:06:21] ppocr INFO:             ToCHWImage : None
[2022/11/22 13:06:21] ppocr INFO:             KeepKeys : 
[2022/11/22 13:06:21] ppocr INFO:                 keep_keys : ['image', 'shape', 'polys', 'ignore_tags']
[2022/11/22 13:06:21] ppocr INFO:     loader : 
[2022/11/22 13:06:21] ppocr INFO:         batch_size_per_card : 1
[2022/11/22 13:06:21] ppocr INFO:         drop_last : False
[2022/11/22 13:06:21] ppocr INFO:         num_workers : 2
[2022/11/22 13:06:21] ppocr INFO:         shuffle : False
[2022/11/22 13:06:21] ppocr INFO: Global : 
[2022/11/22 13:06:21] ppocr INFO:     cal_metric_during_train : False
[2022/11/22 13:06:21] ppocr INFO:     checkpoints : None
[2022/11/22 13:06:21] ppocr INFO:     debug : False
[2022/11/22 13:06:21] ppocr INFO:     distributed : False
[2022/11/22 13:06:21] ppocr INFO:     epoch_num : 50
[2022/11/22 13:06:21] ppocr INFO:     eval_batch_step : [0, 200]
[2022/11/22 13:06:21] ppocr INFO:     infer_img : doc/imgs_en/img_10.jpg
[2022/11/22 13:06:21] ppocr INFO:     log_smooth_window : 20
[2022/11/22 13:06:21] ppocr INFO:     pretrained_model : ./PaddleOCR/pretrained_model/ch_PP-OCRv3_det_distill_train/student.pdparams
[2022/11/22 13:06:21] ppocr INFO:     print_batch_step : 10
[2022/11/22 13:06:21] ppocr INFO:     save_epoch_step : 100
[2022/11/22 13:06:21] ppocr INFO:     save_inference_dir : None
[2022/11/22 13:06:21] ppocr INFO:     save_model_dir : ./output/ch_PP-OCR_V3_det/
[2022/11/22 13:06:21] ppocr INFO:     save_res_path : ./checkpoints/det_db/predicts_db.txt
[2022/11/22 13:06:21] ppocr INFO:     use_gpu : True
[2022/11/22 13:06:21] ppocr INFO:     use_visualdl : False
[2022/11/22 13:06:21] ppocr INFO: Loss : 
[2022/11/22 13:06:21] ppocr INFO:     alpha : 5
[2022/11/22 13:06:21] ppocr INFO:     balance_loss : True
[2022/11/22 13:06:21] ppocr INFO:     beta : 10
[2022/11/22 13:06:21] ppocr INFO:     main_loss_type : DiceLoss
[2022/11/22 13:06:21] ppocr INFO:     name : DBLoss
[2022/11/22 13:06:21] ppocr INFO:     ohem_ratio : 3
[2022/11/22 13:06:21] ppocr INFO: Metric : 
[2022/11/22 13:06:21] ppocr INFO:     main_indicator : hmean
[2022/11/22 13:06:21] ppocr INFO:     name : DetMetric
[2022/11/22 13:06:21] ppocr INFO: Optimizer : 
[2022/11/22 13:06:21] ppocr INFO:     beta1 : 0.9
[2022/11/22 13:06:21] ppocr INFO:     beta2 : 0.999
[2022/11/22 13:06:21] ppocr INFO:     lr : 
[2022/11/22 13:06:21] ppocr INFO:         learning_rate : 0.001
[2022/11/22 13:06:21] ppocr INFO:         name : Cosine
[2022/11/22 13:06:21] ppocr INFO:         warmup_epoch : 2
[2022/11/22 13:06:21] ppocr INFO:     name : Adam
[2022/11/22 13:06:21] ppocr INFO:     regularizer : 
[2022/11/22 13:06:21] ppocr INFO:         factor : 5e-05
[2022/11/22 13:06:21] ppocr INFO:         name : L2
[2022/11/22 13:06:21] ppocr INFO: PostProcess : 
[2022/11/22 13:06:21] ppocr INFO:     box_thresh : 0.6
[2022/11/22 13:06:21] ppocr INFO:     max_candidates : 1000
[2022/11/22 13:06:21] ppocr INFO:     name : DBPostProcess
[2022/11/22 13:06:21] ppocr INFO:     thresh : 0.3
[2022/11/22 13:06:21] ppocr INFO:     unclip_ratio : 1.5
[2022/11/22 13:06:21] ppocr INFO: Train : 
[2022/11/22 13:06:21] ppocr INFO:     dataset : 
[2022/11/22 13:06:21] ppocr INFO:         data_dir : ./dataset/images
[2022/11/22 13:06:21] ppocr INFO:         label_file_list : ['./det_train_label.txt']
[2022/11/22 13:06:21] ppocr INFO:         name : SimpleDataSet
[2022/11/22 13:06:21] ppocr INFO:         ratio_list : [1.0]
[2022/11/22 13:06:21] ppocr INFO:         transforms : 
[2022/11/22 13:06:21] ppocr INFO:             DecodeImage : 
[2022/11/22 13:06:21] ppocr INFO:                 channel_first : False
[2022/11/22 13:06:21] ppocr INFO:                 img_mode : BGR
[2022/11/22 13:06:21] ppocr INFO:             DetLabelEncode : None
[2022/11/22 13:06:21] ppocr INFO:             IaaAugment : 
[2022/11/22 13:06:21] ppocr INFO:                 augmenter_args : 
[2022/11/22 13:06:21] ppocr INFO:                     args : 
[2022/11/22 13:06:21] ppocr INFO:                         p : 0.5
[2022/11/22 13:06:21] ppocr INFO:                     type : Fliplr
[2022/11/22 13:06:21] ppocr INFO:                     args : 
[2022/11/22 13:06:21] ppocr INFO:                         rotate : [-10, 10]
[2022/11/22 13:06:21] ppocr INFO:                     type : Affine
[2022/11/22 13:06:21] ppocr INFO:                     args : 
[2022/11/22 13:06:21] ppocr INFO:                         size : [0.5, 3]
[2022/11/22 13:06:21] ppocr INFO:                     type : Resize
[2022/11/22 13:06:21] ppocr INFO:             EastRandomCropData : 
[2022/11/22 13:06:21] ppocr INFO:                 keep_ratio : True
[2022/11/22 13:06:21] ppocr INFO:                 max_tries : 50
[2022/11/22 13:06:21] ppocr INFO:                 size : [960, 960]
[2022/11/22 13:06:21] ppocr INFO:             MakeBorderMap : 
[2022/11/22 13:06:21] ppocr INFO:                 shrink_ratio : 0.4
[2022/11/22 13:06:21] ppocr INFO:                 thresh_max : 0.7
[2022/11/22 13:06:21] ppocr INFO:                 thresh_min : 0.3
[2022/11/22 13:06:21] ppocr INFO:             MakeShrinkMap : 
[2022/11/22 13:06:21] ppocr INFO:                 min_text_size : 8
[2022/11/22 13:06:21] ppocr INFO:                 shrink_ratio : 0.4
[2022/11/22 13:06:21] ppocr INFO:             NormalizeImage : 
[2022/11/22 13:06:21] ppocr INFO:                 mean : [0.485, 0.456, 0.406]
[2022/11/22 13:06:21] ppocr INFO:                 order : hwc
[2022/11/22 13:06:21] ppocr INFO:                 scale : 1./255.
[2022/11/22 13:06:21] ppocr INFO:                 std : [0.229, 0.224, 0.225]
[2022/11/22 13:06:21] ppocr INFO:             ToCHWImage : None
[2022/11/22 13:06:21] ppocr INFO:             KeepKeys : 
[2022/11/22 13:06:21] ppocr INFO:                 keep_keys : ['image', 'threshold_map', 'threshold_mask', 'shrink_map', 'shrink_mask']
[2022/11/22 13:06:21] ppocr INFO:     loader : 
[2022/11/22 13:06:21] ppocr INFO:         batch_size_per_card : 8
[2022/11/22 13:06:21] ppocr INFO:         drop_last : False
[2022/11/22 13:06:21] ppocr INFO:         num_workers : 4
[2022/11/22 13:06:21] ppocr INFO:         shuffle : True
[2022/11/22 13:06:21] ppocr INFO: profiler_options : None
[2022/11/22 13:06:21] ppocr INFO: train with paddle 2.3.2 and device Place(gpu:0)
[2022/11/22 13:06:21] ppocr INFO: Initialize indexs of datasets:['./det_train_label.txt']
[2022/11/22 13:06:21] ppocr INFO: Initialize indexs of datasets:['./det_eval_label.txt']
W1122 13:06:21.615907 1637263 gpu_resources.cc:61] Please NOTE: device: 0, GPU Compute Capability: 8.0, Driver API Version: 11.8, Runtime API Version: 11.6
W1122 13:06:21.621130 1637263 gpu_resources.cc:91] device: 0, cuDNN Version: 8.4.
[2022/11/22 13:06:25] ppocr INFO: train dataloader has 250 iters
[2022/11/22 13:06:25] ppocr INFO: valid dataloader has 1003 iters
[2022/11/22 13:06:28] ppocr INFO: load pretrain successful from ./PaddleOCR/pretrained_model/ch_PP-OCRv3_det_distill_train/student
[2022/11/22 13:06:28] ppocr INFO: During the training process, after the 0th iteration, an evaluation is run every 200 iterations
[2022/11/22 13:06:41] ppocr INFO: epoch: [1/50], global_step: 10, lr: 0.000009, loss: 3.958436, loss_shrink_maps: 2.519069, loss_threshold_maps: 0.946237, loss_binary_maps: 0.504128, avg_reader_cost: 0.24535 s, avg_batch_cost: 1.18631 s, avg_samples: 8.0, ips: 6.74361 samples/s, eta: 4:06:56
[2022/11/22 13:06:45] ppocr INFO: epoch: [1/50], global_step: 20, lr: 0.000019, loss: 3.866610, loss_shrink_maps: 2.481548, loss_threshold_maps: 0.944892, loss_binary_maps: 0.496426, avg_reader_cost: 0.00237 s, avg_batch_cost: 0.36309 s, avg_samples: 8.0, ips: 22.03292 samples/s, eta: 2:41:08
[2022/11/22 13:06:49] ppocr INFO: epoch: [1/50], global_step: 30, lr: 0.000039, loss: 3.867103, loss_shrink_maps: 2.555314, loss_threshold_maps: 0.927763, loss_binary_maps: 0.511137, avg_reader_cost: 0.00391 s, avg_batch_cost: 0.36944 s, avg_samples: 8.0, ips: 21.65439 samples/s, eta: 2:12:55
[2022/11/22 13:06:53] ppocr INFO: epoch: [1/50], global_step: 40, lr: 0.000059, loss: 3.878752, loss_shrink_maps: 2.555314, loss_threshold_maps: 0.883135, loss_binary_maps: 0.511137, avg_reader_cost: 0.00372 s, avg_batch_cost: 0.36812 s, avg_samples: 8.0, ips: 21.73230 samples/s, eta: 1:58:43
[2022/11/22 13:06:58] ppocr INFO: epoch: [1/50], global_step: 50, lr: 0.000079, loss: 3.711426, loss_shrink_maps: 2.362094, loss_threshold_maps: 0.808442, loss_binary_maps: 0.472508, avg_reader_cost: 0.00139 s, avg_batch_cost: 0.36452 s, avg_samples: 8.0, ips: 21.94658 samples/s, eta: 1:50:02
[2022/11/22 13:07:02] ppocr INFO: epoch: [1/50], global_step: 60, lr: 0.000099, loss: 3.374191, loss_shrink_maps: 2.211356, loss_threshold_maps: 0.763958, loss_binary_maps: 0.442548, avg_reader_cost: 0.00234 s, avg_batch_cost: 0.36611 s, avg_samples: 8.0, ips: 21.85163 samples/s, eta: 1:44:16
[2022/11/22 13:07:06] ppocr INFO: epoch: [1/50], global_step: 70, lr: 0.000119, loss: 3.223969, loss_shrink_maps: 2.070736, loss_threshold_maps: 0.746714, loss_binary_maps: 0.414206, avg_reader_cost: 0.00026 s, avg_batch_cost: 0.36592 s, avg_samples: 8.0, ips: 21.86294 samples/s, eta: 1:40:08
[2022/11/22 13:07:10] ppocr INFO: epoch: [1/50], global_step: 80, lr: 0.000139, loss: 2.865101, loss_shrink_maps: 1.764307, loss_threshold_maps: 0.722126, loss_binary_maps: 0.353773, avg_reader_cost: 0.00557 s, avg_batch_cost: 0.37052 s, avg_samples: 8.0, ips: 21.59116 samples/s, eta: 1:37:08
[2022/11/22 13:07:15] ppocr INFO: epoch: [1/50], global_step: 90, lr: 0.000159, loss: 2.916367, loss_shrink_maps: 1.785145, loss_threshold_maps: 0.736615, loss_binary_maps: 0.357866, avg_reader_cost: 0.00193 s, avg_batch_cost: 0.36543 s, avg_samples: 8.0, ips: 21.89180 samples/s, eta: 1:34:40
[2022/11/22 13:07:19] ppocr INFO: epoch: [1/50], global_step: 100, lr: 0.000179, loss: 2.895378, loss_shrink_maps: 1.764575, loss_threshold_maps: 0.750305, loss_binary_maps: 0.352447, avg_reader_cost: 0.00201 s, avg_batch_cost: 0.36573 s, avg_samples: 8.0, ips: 21.87380 samples/s, eta: 1:32:41
[2022/11/22 13:07:23] ppocr INFO: epoch: [1/50], global_step: 110, lr: 0.000199, loss: 2.629834, loss_shrink_maps: 1.587836, loss_threshold_maps: 0.753817, loss_binary_maps: 0.316871, avg_reader_cost: 0.00125 s, avg_batch_cost: 0.36450 s, avg_samples: 8.0, ips: 21.94768 samples/s, eta: 1:31:02
[2022/11/22 13:07:27] ppocr INFO: epoch: [1/50], global_step: 120, lr: 0.000219, loss: 2.397547, loss_shrink_maps: 1.460247, loss_threshold_maps: 0.667723, loss_binary_maps: 0.291848, avg_reader_cost: 0.00466 s, avg_batch_cost: 0.37048 s, avg_samples: 8.0, ips: 21.59387 samples/s, eta: 1:29:45
[2022/11/22 13:07:32] ppocr INFO: epoch: [1/50], global_step: 130, lr: 0.000239, loss: 2.378679, loss_shrink_maps: 1.401813, loss_threshold_maps: 0.673884, loss_binary_maps: 0.280701, avg_reader_cost: 0.00088 s, avg_batch_cost: 0.36518 s, avg_samples: 8.0, ips: 21.90695 samples/s, eta: 1:28:34
[2022/11/22 13:07:36] ppocr INFO: epoch: [1/50], global_step: 140, lr: 0.000259, loss: 2.451726, loss_shrink_maps: 1.482388, loss_threshold_maps: 0.681260, loss_binary_maps: 0.296235, avg_reader_cost: 0.00300 s, avg_batch_cost: 0.38128 s, avg_samples: 8.0, ips: 20.98186 samples/s, eta: 1:27:47
[2022/11/22 13:07:41] ppocr INFO: epoch: [1/50], global_step: 150, lr: 0.000279, loss: 2.589176, loss_shrink_maps: 1.562890, loss_threshold_maps: 0.715202, loss_binary_maps: 0.312893, avg_reader_cost: 0.00400 s, avg_batch_cost: 0.37979 s, avg_samples: 8.0, ips: 21.06412 samples/s, eta: 1:27:05
[2022/11/22 13:07:45] ppocr INFO: epoch: [1/50], global_step: 160, lr: 0.000299, loss: 2.706166, loss_shrink_maps: 1.639270, loss_threshold_maps: 0.734711, loss_binary_maps: 0.328181, avg_reader_cost: 0.00109 s, avg_batch_cost: 0.37755 s, avg_samples: 8.0, ips: 21.18906 samples/s, eta: 1:26:25
[2022/11/22 13:07:49] ppocr INFO: epoch: [1/50], global_step: 170, lr: 0.000319, loss: 2.643976, loss_shrink_maps: 1.618946, loss_threshold_maps: 0.707388, loss_binary_maps: 0.324081, avg_reader_cost: 0.00578 s, avg_batch_cost: 0.38069 s, avg_samples: 8.0, ips: 21.01471 samples/s, eta: 1:25:52
[2022/11/22 13:07:54] ppocr INFO: epoch: [1/50], global_step: 180, lr: 0.000339, loss: 2.542865, loss_shrink_maps: 1.494720, loss_threshold_maps: 0.716266, loss_binary_maps: 0.299067, avg_reader_cost: 0.00024 s, avg_batch_cost: 0.37948 s, avg_samples: 8.0, ips: 21.08149 samples/s, eta: 1:25:22
[2022/11/22 13:07:58] ppocr INFO: epoch: [1/50], global_step: 190, lr: 0.000359, loss: 2.484875, loss_shrink_maps: 1.468433, loss_threshold_maps: 0.721491, loss_binary_maps: 0.293729, avg_reader_cost: 0.00022 s, avg_batch_cost: 0.36306 s, avg_samples: 8.0, ips: 22.03508 samples/s, eta: 1:24:44
[2022/11/22 13:08:02] ppocr INFO: epoch: [1/50], global_step: 200, lr: 0.000379, loss: 2.391915, loss_shrink_maps: 1.404688, loss_threshold_maps: 0.692680, loss_binary_maps: 0.281057, avg_reader_cost: 0.00021 s, avg_batch_cost: 0.37660 s, avg_samples: 8.0, ips: 21.24274 samples/s, eta: 1:24:17
eval model:: 100%|██████████████████████████| 1003/1003 [00:55<00:00, 18.21it/s]
[2022/11/22 13:08:57] ppocr INFO: cur metric, precision: 0.766156462585034, recall: 0.9745808545159546, hmean: 0.8578909783384908, fps: 24.47464613318005
[2022/11/22 13:08:57] ppocr INFO: save best model is to ./output/ch_PP-OCR_V3_det/best_accuracy
[2022/11/22 13:08:57] ppocr INFO: best metric, hmean: 0.8578909783384908, is_float16: False, precision: 0.766156462585034, recall: 0.9745808545159546, fps: 24.47464613318005, best_epoch: 1
......
eval model:: 100%|██████████████████████████| 1003/1003 [01:00<00:00, 16.46it/s]
[2022/11/22 15:41:39] ppocr INFO: cur metric, precision: 0.9622942113648434, recall: 0.9799891833423472, hmean: 0.9710610932475884, fps: 22.98522684952537
[2022/11/22 15:41:39] ppocr INFO: best metric, hmean: 0.9742212674543502, is_float16: False, precision: 0.9674666666666667, recall: 0.9810708491076258, fps: 23.192479978844272, best_epoch: 31
[2022/11/22 15:41:43] ppocr INFO: epoch: [50/50], global_step: 12410, lr: 0.000006, loss: 1.340954, loss_shrink_maps: 0.700807, loss_threshold_maps: 0.478234, loss_binary_maps: 0.139876, avg_reader_cost: 0.00200 s, avg_batch_cost: 0.37641 s, avg_samples: 8.0, ips: 21.25350 samples/s, eta: 0:00:34
[2022/11/22 15:41:48] ppocr INFO: epoch: [50/50], global_step: 12420, lr: 0.000005, loss: 1.443306, loss_shrink_maps: 0.745190, loss_threshold_maps: 0.499261, loss_binary_maps: 0.149030, avg_reader_cost: 0.00094 s, avg_batch_cost: 0.39211 s, avg_samples: 8.0, ips: 20.40230 samples/s, eta: 0:00:30
[2022/11/22 15:41:52] ppocr INFO: epoch: [50/50], global_step: 12430, lr: 0.000005, loss: 1.321360, loss_shrink_maps: 0.683633, loss_threshold_maps: 0.489775, loss_binary_maps: 0.136621, avg_reader_cost: 0.00189 s, avg_batch_cost: 0.38061 s, avg_samples: 8.0, ips: 21.01903 samples/s, eta: 0:00:27
[2022/11/22 15:41:56] ppocr INFO: epoch: [50/50], global_step: 12440, lr: 0.000005, loss: 1.238384, loss_shrink_maps: 0.635735, loss_threshold_maps: 0.448261, loss_binary_maps: 0.126847, avg_reader_cost: 0.00201 s, avg_batch_cost: 0.37915 s, avg_samples: 8.0, ips: 21.09974 samples/s, eta: 0:00:23
[2022/11/22 15:42:01] ppocr INFO: epoch: [50/50], global_step: 12450, lr: 0.000005, loss: 1.191645, loss_shrink_maps: 0.622861, loss_threshold_maps: 0.437820, loss_binary_maps: 0.124672, avg_reader_cost: 0.00017 s, avg_batch_cost: 0.37562 s, avg_samples: 8.0, ips: 21.29834 samples/s, eta: 0:00:19
[2022/11/22 15:42:05] ppocr INFO: epoch: [50/50], global_step: 12460, lr: 0.000005, loss: 1.180676, loss_shrink_maps: 0.629529, loss_threshold_maps: 0.427876, loss_binary_maps: 0.126142, avg_reader_cost: 0.00199 s, avg_batch_cost: 0.37954 s, avg_samples: 8.0, ips: 21.07820 samples/s, eta: 0:00:15
[2022/11/22 15:42:10] ppocr INFO: epoch: [50/50], global_step: 12470, lr: 0.000005, loss: 1.238333, loss_shrink_maps: 0.670731, loss_threshold_maps: 0.432300, loss_binary_maps: 0.134142, avg_reader_cost: 0.00199 s, avg_batch_cost: 0.37980 s, avg_samples: 8.0, ips: 21.06347 samples/s, eta: 0:00:11
[2022/11/22 15:42:14] ppocr INFO: epoch: [50/50], global_step: 12480, lr: 0.000004, loss: 1.254117, loss_shrink_maps: 0.662911, loss_threshold_maps: 0.454790, loss_binary_maps: 0.132727, avg_reader_cost: 0.00181 s, avg_batch_cost: 0.37586 s, avg_samples: 8.0, ips: 21.28430 samples/s, eta: 0:00:07
[2022/11/22 15:42:18] ppocr INFO: epoch: [50/50], global_step: 12490, lr: 0.000004, loss: 1.324386, loss_shrink_maps: 0.701260, loss_threshold_maps: 0.501584, loss_binary_maps: 0.140036, avg_reader_cost: 0.00019 s, avg_batch_cost: 0.37545 s, avg_samples: 8.0, ips: 21.30779 samples/s, eta: 0:00:03
[2022/11/22 15:42:23] ppocr INFO: epoch: [50/50], global_step: 12500, lr: 0.000004, loss: 1.407378, loss_shrink_maps: 0.767860, loss_threshold_maps: 0.488598, loss_binary_maps: 0.153395, avg_reader_cost: 0.00346 s, avg_batch_cost: 0.37688 s, avg_samples: 8.0, ips: 21.22694 samples/s, eta: 0:00:00
[2022/11/22 15:42:23] ppocr INFO: save model in ./output/ch_PP-OCR_V3_det/latest
[2022/11/22 15:42:23] ppocr INFO: best metric, hmean: 0.9742212674543502, is_float16: False, precision: 0.9674666666666667, recall: 0.9810708491076258, fps: 23.192479978844272, best_epoch: 31

修改了默认超参数,进行训练,模型ch_PP-OCRv3_det_student在训练集上训练50个epoch后,模型在验证集上的hmean达到:97.4%,在后面的epochs无明显增长

如果在训练过程中显存超限,可以把batch size调小一点

5.2 识别模型

5.2.1 识别模型配置

PaddleOCR也提供了许多识别模型,在路径PaddleOCR-r/configs/rec下可找到模型及其配置文件。如我们选用模型ch_PP-OCRv3_rec_distillation,其配置文件路径在:PaddleOCR/configs/rec/PP-OCRv3/ch_PP-OCRv3_rec_distillation.yml。使用前需对其进行必要的设置,如训练参数、数据集路径等。同样也要下载下来预训练权重模型,将部分关键配置展示如下:

#关键训练参数
use_gpu: true #是否使用显卡
epoch_num: 100 #训练epoch个数
save_model_dir: ./output/rec_ppocr_v3_distillation #模型保存路径
save_epoch_step: 100 #每训练100step,保存一次模型
eval_batch_step: [0, 100] #训练每迭代100次,进行一次验证
pretrained_model: ./PaddleOCR/pretrain_modeled/ch_PP-OCRv3_rec_train/best_accuracy.pdparams #预训练模型路径
#训练集路径设置
Train:
  dataset:
    name: SimpleDataSet
    data_dir: ./RecTrainData/ #图片文件夹路径
    label_file_list:
      - ./rec_train_label.txt #标签路径

5.2.2 模型微调

在notebook中运行如下命令对模型进行微调,其中 -c 传入的为配置好的模型文件路径

!python PaddleOCR/tools/train.py \
    -c PaddleOCR/configs/rec/PP-OCRv3/ch_PP-OCRv3_rec_distillation.yml
[2022/11/22 15:42:30] ppocr INFO: Architecture : 
[2022/11/22 15:42:30] ppocr INFO:     Models : 
[2022/11/22 15:42:30] ppocr INFO:         Student : 
[2022/11/22 15:42:30] ppocr INFO:             Backbone : 
[2022/11/22 15:42:30] ppocr INFO:                 last_conv_stride : [1, 2]
[2022/11/22 15:42:30] ppocr INFO:                 last_pool_type : avg
[2022/11/22 15:42:30] ppocr INFO:                 name : MobileNetV1Enhance
[2022/11/22 15:42:30] ppocr INFO:                 scale : 0.5
[2022/11/22 15:42:30] ppocr INFO:             Head : 
[2022/11/22 15:42:30] ppocr INFO:                 head_list : 
[2022/11/22 15:42:30] ppocr INFO:                     CTCHead : 
[2022/11/22 15:42:30] ppocr INFO:                         Head : 
[2022/11/22 15:42:30] ppocr INFO:                             fc_decay : 1e-05
[2022/11/22 15:42:30] ppocr INFO:                         Neck : 
[2022/11/22 15:42:30] ppocr INFO:                             depth : 2
[2022/11/22 15:42:30] ppocr INFO:                             dims : 64
[2022/11/22 15:42:30] ppocr INFO:                             hidden_dims : 120
[2022/11/22 15:42:30] ppocr INFO:                             name : svtr
[2022/11/22 15:42:30] ppocr INFO:                             use_guide : True
[2022/11/22 15:42:30] ppocr INFO:                     SARHead : 
[2022/11/22 15:42:30] ppocr INFO:                         enc_dim : 512
[2022/11/22 15:42:30] ppocr INFO:                         max_text_length : 25
[2022/11/22 15:42:30] ppocr INFO:                 name : MultiHead
[2022/11/22 15:42:30] ppocr INFO:             Transform : None
[2022/11/22 15:42:30] ppocr INFO:             algorithm : SVTR
[2022/11/22 15:42:30] ppocr INFO:             freeze_params : False
[2022/11/22 15:42:30] ppocr INFO:             model_type : rec
[2022/11/22 15:42:30] ppocr INFO:             pretrained : None
[2022/11/22 15:42:30] ppocr INFO:             return_all_feats : True
[2022/11/22 15:42:30] ppocr INFO:         Teacher : 
[2022/11/22 15:42:30] ppocr INFO:             Backbone : 
[2022/11/22 15:42:30] ppocr INFO:                 last_conv_stride : [1, 2]
[2022/11/22 15:42:30] ppocr INFO:                 last_pool_type : avg
[2022/11/22 15:42:30] ppocr INFO:                 name : MobileNetV1Enhance
[2022/11/22 15:42:30] ppocr INFO:                 scale : 0.5
[2022/11/22 15:42:30] ppocr INFO:             Head : 
[2022/11/22 15:42:30] ppocr INFO:                 head_list : 
[2022/11/22 15:42:30] ppocr INFO:                     CTCHead : 
[2022/11/22 15:42:30] ppocr INFO:                         Head : 
[2022/11/22 15:42:30] ppocr INFO:                             fc_decay : 1e-05
[2022/11/22 15:42:30] ppocr INFO:                         Neck : 
[2022/11/22 15:42:30] ppocr INFO:                             depth : 2
[2022/11/22 15:42:30] ppocr INFO:                             dims : 64
[2022/11/22 15:42:30] ppocr INFO:                             hidden_dims : 120
[2022/11/22 15:42:30] ppocr INFO:                             name : svtr
[2022/11/22 15:42:30] ppocr INFO:                             use_guide : True
[2022/11/22 15:42:30] ppocr INFO:                     SARHead : 
[2022/11/22 15:42:30] ppocr INFO:                         enc_dim : 512
[2022/11/22 15:42:30] ppocr INFO:                         max_text_length : 25
[2022/11/22 15:42:30] ppocr INFO:                 name : MultiHead
[2022/11/22 15:42:30] ppocr INFO:             Transform : None
[2022/11/22 15:42:30] ppocr INFO:             algorithm : SVTR
[2022/11/22 15:42:30] ppocr INFO:             freeze_params : False
[2022/11/22 15:42:30] ppocr INFO:             model_type : rec
[2022/11/22 15:42:30] ppocr INFO:             pretrained : None
[2022/11/22 15:42:30] ppocr INFO:             return_all_feats : True
[2022/11/22 15:42:30] ppocr INFO:     algorithm : Distillation
[2022/11/22 15:42:30] ppocr INFO:     model_type : rec
[2022/11/22 15:42:30] ppocr INFO:     name : DistillationModel
[2022/11/22 15:42:30] ppocr INFO: Eval : 
[2022/11/22 15:42:30] ppocr INFO:     dataset : 
[2022/11/22 15:42:30] ppocr INFO:         data_dir : ./RecEvalData/
[2022/11/22 15:42:30] ppocr INFO:         label_file_list : ['./rec_eval_label.txt']
[2022/11/22 15:42:30] ppocr INFO:         name : SimpleDataSet
[2022/11/22 15:42:30] ppocr INFO:         transforms : 
[2022/11/22 15:42:30] ppocr INFO:             DecodeImage : 
[2022/11/22 15:42:30] ppocr INFO:                 channel_first : False
[2022/11/22 15:42:30] ppocr INFO:                 img_mode : BGR
[2022/11/22 15:42:30] ppocr INFO:             MultiLabelEncode : None
[2022/11/22 15:42:30] ppocr INFO:             RecResizeImg : 
[2022/11/22 15:42:30] ppocr INFO:                 image_shape : [3, 48, 320]
[2022/11/22 15:42:30] ppocr INFO:             KeepKeys : 
[2022/11/22 15:42:30] ppocr INFO:                 keep_keys : ['image', 'label_ctc', 'label_sar', 'length', 'valid_ratio']
[2022/11/22 15:42:30] ppocr INFO:     loader : 
[2022/11/22 15:42:30] ppocr INFO:         batch_size_per_card : 128
[2022/11/22 15:42:30] ppocr INFO:         drop_last : False
[2022/11/22 15:42:30] ppocr INFO:         num_workers : 4
[2022/11/22 15:42:30] ppocr INFO:         shuffle : False
[2022/11/22 15:42:30] ppocr INFO: Global : 
[2022/11/22 15:42:30] ppocr INFO:     cal_metric_during_train : True
[2022/11/22 15:42:30] ppocr INFO:     character_dict_path : ./PaddleOCR/ppocr/utils/ppocr_keys_v1.txt
[2022/11/22 15:42:30] ppocr INFO:     checkpoints : None
[2022/11/22 15:42:30] ppocr INFO:     debug : False
[2022/11/22 15:42:30] ppocr INFO:     distributed : False
[2022/11/22 15:42:30] ppocr INFO:     epoch_num : 50
[2022/11/22 15:42:30] ppocr INFO:     eval_batch_step : [0, 100]
[2022/11/22 15:42:30] ppocr INFO:     infer_img : doc/imgs_words/ch/word_1.jpg
[2022/11/22 15:42:30] ppocr INFO:     infer_mode : False
[2022/11/22 15:42:30] ppocr INFO:     log_smooth_window : 20
[2022/11/22 15:42:30] ppocr INFO:     max_text_length : 25
[2022/11/22 15:42:30] ppocr INFO:     pretrained_model : ./PaddleOCR/pretrained_model/ch_PP-OCRv3_rec_train/best_accuracy.pdparams
[2022/11/22 15:42:30] ppocr INFO:     print_batch_step : 10
[2022/11/22 15:42:30] ppocr INFO:     save_epoch_step : 100
[2022/11/22 15:42:30] ppocr INFO:     save_inference_dir : None
[2022/11/22 15:42:30] ppocr INFO:     save_model_dir : ./output/rec_ppocr_v3_distillation
[2022/11/22 15:42:30] ppocr INFO:     save_res_path : ./output/rec/predicts_ppocrv3_distillation.txt
[2022/11/22 15:42:30] ppocr INFO:     use_gpu : True
[2022/11/22 15:42:30] ppocr INFO:     use_space_char : True
[2022/11/22 15:42:30] ppocr INFO:     use_visualdl : False
[2022/11/22 15:42:30] ppocr INFO: Loss : 
[2022/11/22 15:42:30] ppocr INFO:     loss_config_list : 
[2022/11/22 15:42:30] ppocr INFO:         DistillationDMLLoss : 
[2022/11/22 15:42:30] ppocr INFO:             act : softmax
[2022/11/22 15:42:30] ppocr INFO:             dis_head : ctc
[2022/11/22 15:42:30] ppocr INFO:             key : head_out
[2022/11/22 15:42:30] ppocr INFO:             model_name_pairs : [['Student', 'Teacher']]
[2022/11/22 15:42:30] ppocr INFO:             multi_head : True
[2022/11/22 15:42:30] ppocr INFO:             name : dml_ctc
[2022/11/22 15:42:30] ppocr INFO:             use_log : True
[2022/11/22 15:42:30] ppocr INFO:             weight : 1.0
[2022/11/22 15:42:30] ppocr INFO:         DistillationDMLLoss : 
[2022/11/22 15:42:30] ppocr INFO:             act : softmax
[2022/11/22 15:42:30] ppocr INFO:             dis_head : sar
[2022/11/22 15:42:30] ppocr INFO:             key : head_out
[2022/11/22 15:42:30] ppocr INFO:             model_name_pairs : [['Student', 'Teacher']]
[2022/11/22 15:42:30] ppocr INFO:             multi_head : True
[2022/11/22 15:42:30] ppocr INFO:             name : dml_sar
[2022/11/22 15:42:30] ppocr INFO:             use_log : True
[2022/11/22 15:42:30] ppocr INFO:             weight : 0.5
[2022/11/22 15:42:30] ppocr INFO:         DistillationDistanceLoss : 
[2022/11/22 15:42:30] ppocr INFO:             key : backbone_out
[2022/11/22 15:42:30] ppocr INFO:             mode : l2
[2022/11/22 15:42:30] ppocr INFO:             model_name_pairs : [['Student', 'Teacher']]
[2022/11/22 15:42:30] ppocr INFO:             weight : 1.0
[2022/11/22 15:42:30] ppocr INFO:         DistillationCTCLoss : 
[2022/11/22 15:42:30] ppocr INFO:             key : head_out
[2022/11/22 15:42:30] ppocr INFO:             model_name_list : ['Student', 'Teacher']
[2022/11/22 15:42:30] ppocr INFO:             multi_head : True
[2022/11/22 15:42:30] ppocr INFO:             weight : 1.0
[2022/11/22 15:42:30] ppocr INFO:         DistillationSARLoss : 
[2022/11/22 15:42:30] ppocr INFO:             key : head_out
[2022/11/22 15:42:30] ppocr INFO:             model_name_list : ['Student', 'Teacher']
[2022/11/22 15:42:30] ppocr INFO:             multi_head : True
[2022/11/22 15:42:30] ppocr INFO:             weight : 1.0
[2022/11/22 15:42:30] ppocr INFO:     name : CombinedLoss
[2022/11/22 15:42:30] ppocr INFO: Metric : 
[2022/11/22 15:42:30] ppocr INFO:     base_metric_name : RecMetric
[2022/11/22 15:42:30] ppocr INFO:     ignore_space : False
[2022/11/22 15:42:30] ppocr INFO:     key : Student
[2022/11/22 15:42:30] ppocr INFO:     main_indicator : acc
[2022/11/22 15:42:30] ppocr INFO:     name : DistillationMetric
[2022/11/22 15:42:30] ppocr INFO: Optimizer : 
[2022/11/22 15:42:30] ppocr INFO:     beta1 : 0.9
[2022/11/22 15:42:30] ppocr INFO:     beta2 : 0.999
[2022/11/22 15:42:30] ppocr INFO:     lr : 
[2022/11/22 15:42:30] ppocr INFO:         decay_epochs : [700, 800]
[2022/11/22 15:42:30] ppocr INFO:         name : Piecewise
[2022/11/22 15:42:30] ppocr INFO:         values : [0.0005, 5e-05]
[2022/11/22 15:42:30] ppocr INFO:         warmup_epoch : 5
[2022/11/22 15:42:30] ppocr INFO:     name : Adam
[2022/11/22 15:42:30] ppocr INFO:     regularizer : 
[2022/11/22 15:42:30] ppocr INFO:         factor : 3e-05
[2022/11/22 15:42:30] ppocr INFO:         name : L2
[2022/11/22 15:42:30] ppocr INFO: PostProcess : 
[2022/11/22 15:42:30] ppocr INFO:     key : head_out
[2022/11/22 15:42:30] ppocr INFO:     model_name : ['Student', 'Teacher']
[2022/11/22 15:42:30] ppocr INFO:     multi_head : True
[2022/11/22 15:42:30] ppocr INFO:     name : DistillationCTCLabelDecode
[2022/11/22 15:42:30] ppocr INFO: Train : 
[2022/11/22 15:42:30] ppocr INFO:     dataset : 
[2022/11/22 15:42:30] ppocr INFO:         data_dir : ./RecTrainData/
[2022/11/22 15:42:30] ppocr INFO:         ext_op_transform_idx : 1
[2022/11/22 15:42:30] ppocr INFO:         label_file_list : ['./rec_train_label.txt']
[2022/11/22 15:42:30] ppocr INFO:         name : SimpleDataSet
[2022/11/22 15:42:30] ppocr INFO:         transforms : 
[2022/11/22 15:42:30] ppocr INFO:             DecodeImage : 
[2022/11/22 15:42:30] ppocr INFO:                 channel_first : False
[2022/11/22 15:42:30] ppocr INFO:                 img_mode : BGR
[2022/11/22 15:42:30] ppocr INFO:             RecConAug : 
[2022/11/22 15:42:30] ppocr INFO:                 ext_data_num : 2
[2022/11/22 15:42:30] ppocr INFO:                 image_shape : [48, 320, 3]
[2022/11/22 15:42:30] ppocr INFO:                 max_text_length : 25
[2022/11/22 15:42:30] ppocr INFO:                 prob : 0.5
[2022/11/22 15:42:30] ppocr INFO:             RecAug : None
[2022/11/22 15:42:30] ppocr INFO:             MultiLabelEncode : None
[2022/11/22 15:42:30] ppocr INFO:             RecResizeImg : 
[2022/11/22 15:42:30] ppocr INFO:                 image_shape : [3, 48, 320]
[2022/11/22 15:42:30] ppocr INFO:             KeepKeys : 
[2022/11/22 15:42:30] ppocr INFO:                 keep_keys : ['image', 'label_ctc', 'label_sar', 'length', 'valid_ratio']
[2022/11/22 15:42:30] ppocr INFO:     loader : 
[2022/11/22 15:42:30] ppocr INFO:         batch_size_per_card : 128
[2022/11/22 15:42:30] ppocr INFO:         drop_last : True
[2022/11/22 15:42:30] ppocr INFO:         num_workers : 4
[2022/11/22 15:42:30] ppocr INFO:         shuffle : True
[2022/11/22 15:42:30] ppocr INFO: profiler_options : None
[2022/11/22 15:42:30] ppocr INFO: train with paddle 2.3.2 and device Place(gpu:0)
[2022/11/22 15:42:30] ppocr INFO: Initialize indexs of datasets:['./rec_train_label.txt']
[2022/11/22 15:42:30] ppocr INFO: Initialize indexs of datasets:['./rec_eval_label.txt']
W1122 15:42:30.640520 1858440 gpu_resources.cc:61] Please NOTE: device: 0, GPU Compute Capability: 8.0, Driver API Version: 11.8, Runtime API Version: 11.6
W1122 15:42:30.645676 1858440 gpu_resources.cc:91] device: 0, cuDNN Version: 8.4.
[2022/11/22 15:42:36] ppocr INFO: train dataloader has 28 iters
[2022/11/22 15:42:36] ppocr INFO: valid dataloader has 15 iters
[2022/11/22 15:42:40] ppocr INFO: load pretrain successful from ./PaddleOCR/pretrained_model/ch_PP-OCRv3_rec_train/best_accuracy
[2022/11/22 15:42:40] ppocr INFO: During the training process, after the 0th iteration, an evaluation is run every 100 iterations
[2022/11/22 15:43:51] ppocr INFO: epoch: [1/50], global_step: 10, lr: 0.000016, acc: 0.121094, norm_edit_dis: 0.606677, Teacher_acc: 0.167969, Teacher_norm_edit_dis: 0.677345, dml_ctc_0: 3.437894, loss: 35.609940, dml_sar_0: 3.548777, loss_distance_l2_Student_Teacher_0: 0.052442, loss_ctc_Student_0: 13.116257, loss_ctc_Teacher_1: 11.995207, loss_sar_Student_0: 1.639074, loss_sar_Teacher_1: 1.661752, avg_reader_cost: 0.34177 s, avg_batch_cost: 7.12488 s, avg_samples: 128.0, ips: 17.96523 samples/s, eta: 2:45:03
[2022/11/22 15:44:51] ppocr INFO: epoch: [1/50], global_step: 20, lr: 0.000034, acc: 0.167969, norm_edit_dis: 0.688300, Teacher_acc: 0.234375, Teacher_norm_edit_dis: 0.717374, dml_ctc_0: 2.784870, loss: 26.732544, dml_sar_0: 3.463835, loss_distance_l2_Student_Teacher_0: 0.033331, loss_ctc_Student_0: 8.958948, loss_ctc_Teacher_1: 8.770853, loss_sar_Student_0: 1.382131, loss_sar_Teacher_1: 1.443961, avg_reader_cost: 0.00024 s, avg_batch_cost: 5.97099 s, avg_samples: 128.0, ips: 21.43698 samples/s, eta: 2:30:36
[2022/11/22 15:45:38] ppocr INFO: epoch: [1/50], global_step: 28, lr: 0.000062, acc: 0.406250, norm_edit_dis: 0.845976, Teacher_acc: 0.375000, Teacher_norm_edit_dis: 0.832357, dml_ctc_0: 2.184122, loss: 18.748760, dml_sar_0: 3.200224, loss_distance_l2_Student_Teacher_0: 0.030766, loss_ctc_Student_0: 5.591382, loss_ctc_Teacher_1: 5.406458, loss_sar_Student_0: 1.356752, loss_sar_Teacher_1: 1.350660, avg_reader_cost: 0.00014 s, avg_batch_cost: 4.78187 s, avg_samples: 102.4, ips: 21.41421 samples/s, eta: 2:26:00
......
[2022/11/22 17:58:28] ppocr INFO: epoch: [48/50], global_step: 1330, lr: 0.000500, acc: 0.941406, norm_edit_dis: 0.990900, Teacher_acc: 0.941406, Teacher_norm_edit_dis: 0.991584, dml_ctc_0: 0.437659, loss: 5.970131, dml_sar_0: 1.605164, loss_distance_l2_Student_Teacher_0: 0.009221, loss_ctc_Student_0: 0.399064, loss_ctc_Teacher_1: 0.373846, loss_sar_Student_0: 1.546151, loss_sar_Teacher_1: 1.543791, avg_reader_cost: 0.00022 s, avg_batch_cost: 5.92309 s, avg_samples: 128.0, ips: 21.61035 samples/s, eta: 0:07:05
[2022/11/22 17:59:27] ppocr INFO: epoch: [48/50], global_step: 1340, lr: 0.000500, acc: 0.945312, norm_edit_dis: 0.991877, Teacher_acc: 0.945312, Teacher_norm_edit_dis: 0.991806, dml_ctc_0: 0.412004, loss: 5.852842, dml_sar_0: 1.617879, loss_distance_l2_Student_Teacher_0: 0.008481, loss_ctc_Student_0: 0.323649, loss_ctc_Teacher_1: 0.335442, loss_sar_Student_0: 1.572509, loss_sar_Teacher_1: 1.564403, avg_reader_cost: 0.00020 s, avg_batch_cost: 5.92285 s, avg_samples: 128.0, ips: 21.61121 samples/s, eta: 0:06:05
[2022/11/22 17:59:50] ppocr INFO: epoch: [48/50], global_step: 1344, lr: 0.000500, acc: 0.949219, norm_edit_dis: 0.992547, Teacher_acc: 0.945312, Teacher_norm_edit_dis: 0.992294, dml_ctc_0: 0.382377, loss: 5.763916, dml_sar_0: 1.625467, loss_distance_l2_Student_Teacher_0: 0.008044, loss_ctc_Student_0: 0.295685, loss_ctc_Teacher_1: 0.305044, loss_sar_Student_0: 1.593660, loss_sar_Teacher_1: 1.602923, avg_reader_cost: 0.00006 s, avg_batch_cost: 2.36978 s, avg_samples: 51.2, ips: 21.60541 samples/s, eta: 0:05:40
[2022/11/22 17:59:52] ppocr INFO: save model in ./output/rec_ppocr_v3_distillation/latest
[2022/11/22 18:00:30] ppocr INFO: epoch: [49/50], global_step: 1350, lr: 0.000500, acc: 0.953125, norm_edit_dis: 0.992251, Teacher_acc: 0.949219, Teacher_norm_edit_dis: 0.992294, dml_ctc_0: 0.380184, loss: 5.734705, dml_sar_0: 1.613987, loss_distance_l2_Student_Teacher_0: 0.008281, loss_ctc_Student_0: 0.286936, loss_ctc_Teacher_1: 0.283989, loss_sar_Student_0: 1.616180, loss_sar_Teacher_1: 1.584866, avg_reader_cost: 0.43557 s, avg_batch_cost: 4.00024 s, avg_samples: 76.8, ips: 19.19884 samples/s, eta: 0:05:04
[2022/11/22 18:01:30] ppocr INFO: epoch: [49/50], global_step: 1360, lr: 0.000500, acc: 0.933594, norm_edit_dis: 0.990372, Teacher_acc: 0.949219, Teacher_norm_edit_dis: 0.991896, dml_ctc_0: 0.517823, loss: 6.069489, dml_sar_0: 1.640750, loss_distance_l2_Student_Teacher_0: 0.012120, loss_ctc_Student_0: 0.346327, loss_ctc_Teacher_1: 0.297514, loss_sar_Student_0: 1.613212, loss_sar_Teacher_1: 1.597852, avg_reader_cost: 0.00020 s, avg_batch_cost: 5.92192 s, avg_samples: 128.0, ips: 21.61461 samples/s, eta: 0:04:03
[2022/11/22 18:02:29] ppocr INFO: epoch: [49/50], global_step: 1370, lr: 0.000500, acc: 0.929687, norm_edit_dis: 0.988311, Teacher_acc: 0.945312, Teacher_norm_edit_dis: 0.989802, dml_ctc_0: 0.608851, loss: 6.130374, dml_sar_0: 1.658343, loss_distance_l2_Student_Teacher_0: 0.013111, loss_ctc_Student_0: 0.383777, loss_ctc_Teacher_1: 0.333669, loss_sar_Student_0: 1.607618, loss_sar_Teacher_1: 1.596914, avg_reader_cost: 0.00018 s, avg_batch_cost: 5.92189 s, avg_samples: 128.0, ips: 21.61470 samples/s, eta: 0:03:02
[2022/11/22 18:02:41] ppocr INFO: epoch: [49/50], global_step: 1372, lr: 0.000500, acc: 0.929687, norm_edit_dis: 0.989469, Teacher_acc: 0.949219, Teacher_norm_edit_dis: 0.990958, dml_ctc_0: 0.608851, loss: 6.100844, dml_sar_0: 1.638648, loss_distance_l2_Student_Teacher_0: 0.013032, loss_ctc_Student_0: 0.365399, loss_ctc_Teacher_1: 0.333669, loss_sar_Student_0: 1.607618, loss_sar_Teacher_1: 1.596914, avg_reader_cost: 0.00003 s, avg_batch_cost: 1.18402 s, avg_samples: 25.6, ips: 21.62132 samples/s, eta: 0:02:50
[2022/11/22 18:02:42] ppocr INFO: save model in ./output/rec_ppocr_v3_distillation/latest
[2022/11/22 18:03:32] ppocr INFO: epoch: [50/50], global_step: 1380, lr: 0.000500, acc: 0.937500, norm_edit_dis: 0.987867, Teacher_acc: 0.953125, Teacher_norm_edit_dis: 0.990702, dml_ctc_0: 0.586539, loss: 6.132624, dml_sar_0: 1.632728, loss_distance_l2_Student_Teacher_0: 0.012799, loss_ctc_Student_0: 0.408299, loss_ctc_Teacher_1: 0.324945, loss_sar_Student_0: 1.611600, loss_sar_Teacher_1: 1.575031, avg_reader_cost: 0.39964 s, avg_batch_cost: 5.15052 s, avg_samples: 102.4, ips: 19.88150 samples/s, eta: 0:02:01
[2022/11/22 18:04:31] ppocr INFO: epoch: [50/50], global_step: 1390, lr: 0.000500, acc: 0.941406, norm_edit_dis: 0.990503, Teacher_acc: 0.945312, Teacher_norm_edit_dis: 0.991241, dml_ctc_0: 0.504434, loss: 5.998446, dml_sar_0: 1.597987, loss_distance_l2_Student_Teacher_0: 0.012755, loss_ctc_Student_0: 0.347707, loss_ctc_Teacher_1: 0.278820, loss_sar_Student_0: 1.595945, loss_sar_Teacher_1: 1.588920, avg_reader_cost: 0.00023 s, avg_batch_cost: 5.92184 s, avg_samples: 128.0, ips: 21.61492 samples/s, eta: 0:01:00
[2022/11/22 18:05:31] ppocr INFO: epoch: [50/50], global_step: 1400, lr: 0.000500, acc: 0.941406, norm_edit_dis: 0.988858, Teacher_acc: 0.945312, Teacher_norm_edit_dis: 0.990264, dml_ctc_0: 0.435958, loss: 5.922035, dml_sar_0: 1.579629, loss_distance_l2_Student_Teacher_0: 0.009988, loss_ctc_Student_0: 0.420990, loss_ctc_Teacher_1: 0.376272, loss_sar_Student_0: 1.586890, loss_sar_Teacher_1: 1.588358, avg_reader_cost: 0.00019 s, avg_batch_cost: 5.92275 s, avg_samples: 128.0, ips: 21.61156 samples/s, eta: 0:00:00
eval model:: 100%|██████████████████████████████| 15/15 [00:03<00:00,  4.31it/s]
[2022/11/22 18:05:34] ppocr INFO: cur metric, acc: 0.9648458574102442, norm_edit_dis: 0.9943541495766799, Teacher_acc: 0.9616008601319586, Teacher_norm_edit_dis: 0.9932329163901207, fps: 1027.3727543805567
[2022/11/22 18:05:34] ppocr INFO: best metric, acc: 0.9670091889291013, is_float16: False, norm_edit_dis: 0.9949488316175777, Teacher_acc: 0.9643050245305299, Teacher_norm_edit_dis: 0.9935388030383228, fps: 1018.9137081527358, best_epoch: 40
[2022/11/22 18:05:36] ppocr INFO: save model in ./output/rec_ppocr_v3_distillation/latest
[2022/11/22 18:05:36] ppocr INFO: best metric, acc: 0.9670091889291013, is_float16: False, norm_edit_dis: 0.9949488316175777, Teacher_acc: 0.9643050245305299, Teacher_norm_edit_dis: 0.9935388030383228, fps: 1018.9137081527358, best_epoch: 40

使用默认超参数,模型ch_PP-OCRv3_rec_distillation在训练集上训练50个epoch后,模型在验证集上的精度达到:96.7%,后续无明显增长

六、结果展示

6.1 检测模型推理

在notebook中运行如下命令使用微调过的模型检测测试图片中的文字,其中:

  • Global.infer_img 为图片路径或图片文件夹路径,
  • Global.pretrained_model 为微调过的模型,
  • Global.save_res_path 为推理结果保存路径
!python PaddleOCR/tools/infer_det.py \
    -c PaddleOCR/configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_student.yml \
    -o Global.infer_img="./dataset/images" Global.pretrained_model="./output/ch_PP-OCR_V3_det/best_accuracy" Global.save_res_path="./output/det_infer_res/predicts.txt"
[2022/11/22 19:26:36] ppocr INFO: Architecture : 
[2022/11/22 19:26:36] ppocr INFO:     Backbone : 
[2022/11/22 19:26:36] ppocr INFO:         disable_se : True
[2022/11/22 19:26:36] ppocr INFO:         model_name : large
[2022/11/22 19:26:36] ppocr INFO:         name : MobileNetV3
[2022/11/22 19:26:36] ppocr INFO:         scale : 0.5
[2022/11/22 19:26:36] ppocr INFO:     Head : 
[2022/11/22 19:26:36] ppocr INFO:         k : 50
[2022/11/22 19:26:36] ppocr INFO:         name : DBHead
[2022/11/22 19:26:36] ppocr INFO:     Neck : 
[2022/11/22 19:26:36] ppocr INFO:         name : RSEFPN
[2022/11/22 19:26:36] ppocr INFO:         out_channels : 96
[2022/11/22 19:26:36] ppocr INFO:         shortcut : True
[2022/11/22 19:26:36] ppocr INFO:     Transform : None
[2022/11/22 19:26:36] ppocr INFO:     algorithm : DB
[2022/11/22 19:26:36] ppocr INFO:     model_type : det
[2022/11/22 19:26:36] ppocr INFO: Eval : 
[2022/11/22 19:26:36] ppocr INFO:     dataset : 
[2022/11/22 19:26:36] ppocr INFO:         data_dir : ./dataset/images
[2022/11/22 19:26:36] ppocr INFO:         label_file_list : ['./det_eval_label.txt']
[2022/11/22 19:26:36] ppocr INFO:         name : SimpleDataSet
[2022/11/22 19:26:36] ppocr INFO:         transforms : 
[2022/11/22 19:26:36] ppocr INFO:             DecodeImage : 
[2022/11/22 19:26:36] ppocr INFO:                 channel_first : False
[2022/11/22 19:26:36] ppocr INFO:                 img_mode : BGR
[2022/11/22 19:26:36] ppocr INFO:             DetLabelEncode : None
[2022/11/22 19:26:36] ppocr INFO:             DetResizeForTest : None
[2022/11/22 19:26:36] ppocr INFO:             NormalizeImage : 
[2022/11/22 19:26:36] ppocr INFO:                 mean : [0.485, 0.456, 0.406]
[2022/11/22 19:26:36] ppocr INFO:                 order : hwc
[2022/11/22 19:26:36] ppocr INFO:                 scale : 1./255.
[2022/11/22 19:26:36] ppocr INFO:                 std : [0.229, 0.224, 0.225]
[2022/11/22 19:26:36] ppocr INFO:             ToCHWImage : None
[2022/11/22 19:26:36] ppocr INFO:             KeepKeys : 
[2022/11/22 19:26:36] ppocr INFO:                 keep_keys : ['image', 'shape', 'polys', 'ignore_tags']
[2022/11/22 19:26:36] ppocr INFO:     loader : 
[2022/11/22 19:26:36] ppocr INFO:         batch_size_per_card : 1
[2022/11/22 19:26:36] ppocr INFO:         drop_last : False
[2022/11/22 19:26:36] ppocr INFO:         num_workers : 2
[2022/11/22 19:26:36] ppocr INFO:         shuffle : False
[2022/11/22 19:26:36] ppocr INFO: Global : 
[2022/11/22 19:26:36] ppocr INFO:     cal_metric_during_train : False
[2022/11/22 19:26:36] ppocr INFO:     checkpoints : None
[2022/11/22 19:26:36] ppocr INFO:     debug : False
[2022/11/22 19:26:36] ppocr INFO:     distributed : False
[2022/11/22 19:26:36] ppocr INFO:     epoch_num : 50
[2022/11/22 19:26:36] ppocr INFO:     eval_batch_step : [0, 200]
[2022/11/22 19:26:36] ppocr INFO:     infer_img : ./dataset/images
[2022/11/22 19:26:36] ppocr INFO:     log_smooth_window : 20
[2022/11/22 19:26:36] ppocr INFO:     pretrained_model : ./output/ch_PP-OCR_V3_det/best_accuracy
[2022/11/22 19:26:36] ppocr INFO:     print_batch_step : 10
[2022/11/22 19:26:36] ppocr INFO:     save_epoch_step : 100
[2022/11/22 19:26:36] ppocr INFO:     save_inference_dir : None
[2022/11/22 19:26:36] ppocr INFO:     save_model_dir : ./output/ch_PP-OCR_V3_det/
[2022/11/22 19:26:36] ppocr INFO:     save_res_path : ./output/det_infer_res/predicts.txt
[2022/11/22 19:26:36] ppocr INFO:     use_gpu : True
[2022/11/22 19:26:36] ppocr INFO:     use_visualdl : False
[2022/11/22 19:26:36] ppocr INFO: Loss : 
[2022/11/22 19:26:36] ppocr INFO:     alpha : 5
[2022/11/22 19:26:36] ppocr INFO:     balance_loss : True
[2022/11/22 19:26:36] ppocr INFO:     beta : 10
[2022/11/22 19:26:36] ppocr INFO:     main_loss_type : DiceLoss
[2022/11/22 19:26:36] ppocr INFO:     name : DBLoss
[2022/11/22 19:26:36] ppocr INFO:     ohem_ratio : 3
[2022/11/22 19:26:36] ppocr INFO: Metric : 
[2022/11/22 19:26:36] ppocr INFO:     main_indicator : hmean
[2022/11/22 19:26:36] ppocr INFO:     name : DetMetric
[2022/11/22 19:26:36] ppocr INFO: Optimizer : 
[2022/11/22 19:26:36] ppocr INFO:     beta1 : 0.9
[2022/11/22 19:26:36] ppocr INFO:     beta2 : 0.999
[2022/11/22 19:26:36] ppocr INFO:     lr : 
[2022/11/22 19:26:36] ppocr INFO:         learning_rate : 0.001
[2022/11/22 19:26:36] ppocr INFO:         name : Cosine
[2022/11/22 19:26:36] ppocr INFO:         warmup_epoch : 2
[2022/11/22 19:26:36] ppocr INFO:     name : Adam
[2022/11/22 19:26:36] ppocr INFO:     regularizer : 
[2022/11/22 19:26:36] ppocr INFO:         factor : 5e-05
[2022/11/22 19:26:36] ppocr INFO:         name : L2
[2022/11/22 19:26:36] ppocr INFO: PostProcess : 
[2022/11/22 19:26:36] ppocr INFO:     box_thresh : 0.6
[2022/11/22 19:26:36] ppocr INFO:     max_candidates : 1000
[2022/11/22 19:26:36] ppocr INFO:     name : DBPostProcess
[2022/11/22 19:26:36] ppocr INFO:     thresh : 0.3
[2022/11/22 19:26:36] ppocr INFO:     unclip_ratio : 1.5
[2022/11/22 19:26:36] ppocr INFO: Train : 
[2022/11/22 19:26:36] ppocr INFO:     dataset : 
[2022/11/22 19:26:36] ppocr INFO:         data_dir : ./dataset/images
[2022/11/22 19:26:36] ppocr INFO:         label_file_list : ['./det_train_label.txt']
[2022/11/22 19:26:36] ppocr INFO:         name : SimpleDataSet
[2022/11/22 19:26:36] ppocr INFO:         ratio_list : [1.0]
[2022/11/22 19:26:36] ppocr INFO:         transforms : 
[2022/11/22 19:26:36] ppocr INFO:             DecodeImage : 
[2022/11/22 19:26:36] ppocr INFO:                 channel_first : False
[2022/11/22 19:26:36] ppocr INFO:                 img_mode : BGR
[2022/11/22 19:26:36] ppocr INFO:             DetLabelEncode : None
[2022/11/22 19:26:36] ppocr INFO:             IaaAugment : 
[2022/11/22 19:26:36] ppocr INFO:                 augmenter_args : 
[2022/11/22 19:26:36] ppocr INFO:                     args : 
[2022/11/22 19:26:36] ppocr INFO:                         p : 0.5
[2022/11/22 19:26:36] ppocr INFO:                     type : Fliplr
[2022/11/22 19:26:36] ppocr INFO:                     args : 
[2022/11/22 19:26:36] ppocr INFO:                         rotate : [-10, 10]
[2022/11/22 19:26:36] ppocr INFO:                     type : Affine
[2022/11/22 19:26:36] ppocr INFO:                     args : 
[2022/11/22 19:26:36] ppocr INFO:                         size : [0.5, 3]
[2022/11/22 19:26:36] ppocr INFO:                     type : Resize
[2022/11/22 19:26:36] ppocr INFO:             EastRandomCropData : 
[2022/11/22 19:26:36] ppocr INFO:                 keep_ratio : True
[2022/11/22 19:26:36] ppocr INFO:                 max_tries : 50
[2022/11/22 19:26:36] ppocr INFO:                 size : [960, 960]
[2022/11/22 19:26:36] ppocr INFO:             MakeBorderMap : 
[2022/11/22 19:26:36] ppocr INFO:                 shrink_ratio : 0.4
[2022/11/22 19:26:36] ppocr INFO:                 thresh_max : 0.7
[2022/11/22 19:26:36] ppocr INFO:                 thresh_min : 0.3
[2022/11/22 19:26:36] ppocr INFO:             MakeShrinkMap : 
[2022/11/22 19:26:36] ppocr INFO:                 min_text_size : 8
[2022/11/22 19:26:36] ppocr INFO:                 shrink_ratio : 0.4
[2022/11/22 19:26:36] ppocr INFO:             NormalizeImage : 
[2022/11/22 19:26:36] ppocr INFO:                 mean : [0.485, 0.456, 0.406]
[2022/11/22 19:26:36] ppocr INFO:                 order : hwc
[2022/11/22 19:26:36] ppocr INFO:                 scale : 1./255.
[2022/11/22 19:26:36] ppocr INFO:                 std : [0.229, 0.224, 0.225]
[2022/11/22 19:26:36] ppocr INFO:             ToCHWImage : None
[2022/11/22 19:26:36] ppocr INFO:             KeepKeys : 
[2022/11/22 19:26:36] ppocr INFO:                 keep_keys : ['image', 'threshold_map', 'threshold_mask', 'shrink_map', 'shrink_mask']
[2022/11/22 19:26:36] ppocr INFO:     loader : 
[2022/11/22 19:26:36] ppocr INFO:         batch_size_per_card : 8
[2022/11/22 19:26:36] ppocr INFO:         drop_last : False
[2022/11/22 19:26:36] ppocr INFO:         num_workers : 4
[2022/11/22 19:26:36] ppocr INFO:         shuffle : True
[2022/11/22 19:26:36] ppocr INFO: profiler_options : None
[2022/11/22 19:26:36] ppocr INFO: train with paddle 2.3.2 and device Place(gpu:0)
W1122 19:26:36.014780 2248672 gpu_resources.cc:61] Please NOTE: device: 0, GPU Compute Capability: 8.0, Driver API Version: 11.8, Runtime API Version: 11.6
W1122 19:26:36.019917 2248672 gpu_resources.cc:91] device: 0, cuDNN Version: 8.4.
[2022/11/22 19:26:43] ppocr INFO: load pretrain successful from ./output/ch_PP-OCR_V3_det/best_accuracy
[2022/11/22 19:26:43] ppocr INFO: infer_img: ./dataset/images/1-122700001-OCR-LF-C01.jpg
[2022/11/22 19:26:50] ppocr INFO: The detected Image saved in ./output/det_infer_res/det_results/1-122700001-OCR-LF-C01.jpg
[2022/11/22 19:26:50] ppocr INFO: infer_img: ./dataset/images/1-122720001-OCR-AH-A01.jpg
[2022/11/22 19:26:50] ppocr INFO: The detected Image saved in ./output/det_infer_res/det_results/1-122720001-OCR-AH-A01.jpg
[2022/11/22 19:26:50] ppocr INFO: infer_img: ./dataset/images/1-122720001-OCR-AS-B01.jpg
[2022/11/22 19:26:51] ppocr INFO: The detected Image saved in ./output/det_infer_res/det_results/1-122720001-OCR-AS-B01.jpg
[2022/11/22 19:26:51] ppocr INFO: infer_img: ./dataset/images/1-122720001-OCR-LB-C02.jpg
[2022/11/22 19:26:51] ppocr INFO: The detected Image saved in ./output/det_infer_res/det_results/1-122720001-OCR-LB-C02.jpg
[2022/11/22 19:26:51] ppocr INFO: infer_img: ./dataset/images/1-122720001-OCR-RF-D01.jpg
[2022/11/22 19:26:51] ppocr INFO: The detected Image saved in ./output/det_infer_res/det_results/1-122720001-OCR-RF-D01.jpg
[2022/11/22 19:26:51] ppocr INFO: infer_img: ./dataset/images/1-122728001-OCR-AH-A01.jpg
[2022/11/22 19:26:51] ppocr INFO: The detected Image saved in ./output/det_infer_res/det_results/1-122728001-OCR-AH-A01.jpg
[2022/11/22 19:26:51] ppocr INFO: infer_img: ./dataset/images/1-122728001-OCR-RF-D01.jpg
[2022/11/22 19:26:51] ppocr INFO: The detected Image saved in ./output/det_infer_res/det_results/1-122728001-OCR-RF-D01.jpg
[2022/11/22 19:26:51] ppocr INFO: infer_img: ./dataset/images/1-122738001-OCR-AH-A01.jpg
[2022/11/22 19:26:51] ppocr INFO: The detected Image saved in ./output/det_infer_res/det_results/1-122738001-OCR-AH-A01.jpg
[2022/11/22 19:26:51] ppocr INFO: infer_img: ./dataset/images/1-122738001-OCR-AS-B01.jpg
[2022/11/22 19:26:52] ppocr INFO: The detected Image saved in ./output/det_infer_res/det_results/1-122738001-OCR-AS-B01.jpg
[2022/11/22 19:26:52] ppocr INFO: infer_img: ./dataset/images/1-122738001-OCR-LF-C01.jpg
[2022/11/22 19:26:52] ppocr INFO: The detected Image saved in ./output/det_infer_res/det_results/1-122738001-OCR-LF-C01.jpg
[2022/11/22 19:26:52] ppocr INFO: infer_img: ./dataset/images/1-122740001-OCR-AH-A01.jpg
[2022/11/22 19:26:52] ppocr INFO: The detected Image saved in ./output/det_infer_res/det_results/1-122740001-OCR-AH-A01.jpg
[2022/11/22 19:26:52] ppocr INFO: infer_img: ./dataset/images/1-122740001-OCR-LB-C02.jpg
[2022/11/22 19:26:52] ppocr INFO: The detected Image saved in ./output/det_infer_res/det_results/1-122740001-OCR-LB-C02.jpg
......
[2022/11/22 19:35:12] ppocr INFO: infer_img: ./dataset/images/1-155800001-OCR-AH-A01.jpg
[2022/11/22 19:35:12] ppocr INFO: The detected Image saved in ./output/det_infer_res/det_results/1-155800001-OCR-AH-A01.jpg
[2022/11/22 19:35:12] ppocr INFO: infer_img: ./dataset/images/1-155800001-OCR-AS-B01.jpg
[2022/11/22 19:35:12] ppocr INFO: The detected Image saved in ./output/det_infer_res/det_results/1-155800001-OCR-AS-B01.jpg
[2022/11/22 19:35:12] ppocr INFO: infer_img: ./dataset/images/1-155800001-OCR-LB-C02.jpg
[2022/11/22 19:35:12] ppocr INFO: The detected Image saved in ./output/det_infer_res/det_results/1-155800001-OCR-LB-C02.jpg
[2022/11/22 19:35:12] ppocr INFO: infer_img: ./dataset/images/1-155800001-OCR-LF-C01.jpg
[2022/11/22 19:35:12] ppocr INFO: The detected Image saved in ./output/det_infer_res/det_results/1-155800001-OCR-LF-C01.jpg
[2022/11/22 19:35:12] ppocr INFO: infer_img: ./dataset/images/1-155800001-OCR-RF-D01.jpg
[2022/11/22 19:35:12] ppocr INFO: The detected Image saved in ./output/det_infer_res/det_results/1-155800001-OCR-RF-D01.jpg
[2022/11/22 19:35:12] ppocr INFO: infer_img: ./dataset/images/1.png
[2022/11/22 19:35:12] ppocr INFO: success!

6.2 识别模型推理

在notebook中运行如下命令使用微调过的模型检测测试图片中的文字,其中:

  • Global.infer_img 为图片路径或图片文件夹路径,
  • Global.pretrained_model 为微调过的模型,
  • Global.save_res_path 为推理结果保存路径
%run PaddleOCR/tools/infer_rec.py \
    -c PaddleOCR/configs/rec/PP-OCRv3/ch_PP-OCRv3_rec_distillation.yml \
    -o Global.infer_img="./RecEvalData/" Global.pretrained_model="./output/rec_ppocr_v3_distillation/best_accuracy" Global.save_res_path="./output/rec_infer_res/predicts.txt"
[2022/11/22 19:35:16] ppocr INFO: Architecture : 
[2022/11/22 19:35:16] ppocr INFO:     Models : 
[2022/11/22 19:35:16] ppocr INFO:         Student : 
[2022/11/22 19:35:16] ppocr INFO:             Backbone : 
[2022/11/22 19:35:16] ppocr INFO:                 last_conv_stride : [1, 2]
[2022/11/22 19:35:16] ppocr INFO:                 last_pool_type : avg
[2022/11/22 19:35:16] ppocr INFO:                 name : MobileNetV1Enhance
[2022/11/22 19:35:16] ppocr INFO:                 scale : 0.5
[2022/11/22 19:35:16] ppocr INFO:             Head : 
[2022/11/22 19:35:16] ppocr INFO:                 head_list : 
[2022/11/22 19:35:16] ppocr INFO:                     CTCHead : 
[2022/11/22 19:35:16] ppocr INFO:                         Head : 
[2022/11/22 19:35:16] ppocr INFO:                             fc_decay : 1e-05
[2022/11/22 19:35:16] ppocr INFO:                         Neck : 
[2022/11/22 19:35:16] ppocr INFO:                             depth : 2
[2022/11/22 19:35:16] ppocr INFO:                             dims : 64
[2022/11/22 19:35:16] ppocr INFO:                             hidden_dims : 120
[2022/11/22 19:35:16] ppocr INFO:                             name : svtr
[2022/11/22 19:35:16] ppocr INFO:                             use_guide : True
[2022/11/22 19:35:16] ppocr INFO:                     SARHead : 
[2022/11/22 19:35:16] ppocr INFO:                         enc_dim : 512
[2022/11/22 19:35:16] ppocr INFO:                         max_text_length : 25
[2022/11/22 19:35:16] ppocr INFO:                 name : MultiHead
[2022/11/22 19:35:16] ppocr INFO:             Transform : None
[2022/11/22 19:35:16] ppocr INFO:             algorithm : SVTR
[2022/11/22 19:35:16] ppocr INFO:             freeze_params : False
[2022/11/22 19:35:16] ppocr INFO:             model_type : rec
[2022/11/22 19:35:16] ppocr INFO:             pretrained : None
[2022/11/22 19:35:16] ppocr INFO:             return_all_feats : True
[2022/11/22 19:35:16] ppocr INFO:         Teacher : 
[2022/11/22 19:35:16] ppocr INFO:             Backbone : 
[2022/11/22 19:35:16] ppocr INFO:                 last_conv_stride : [1, 2]
[2022/11/22 19:35:16] ppocr INFO:                 last_pool_type : avg
[2022/11/22 19:35:16] ppocr INFO:                 name : MobileNetV1Enhance
[2022/11/22 19:35:16] ppocr INFO:                 scale : 0.5
[2022/11/22 19:35:16] ppocr INFO:             Head : 
[2022/11/22 19:35:16] ppocr INFO:                 head_list : 
[2022/11/22 19:35:16] ppocr INFO:                     CTCHead : 
[2022/11/22 19:35:16] ppocr INFO:                         Head : 
[2022/11/22 19:35:16] ppocr INFO:                             fc_decay : 1e-05
[2022/11/22 19:35:16] ppocr INFO:                         Neck : 
[2022/11/22 19:35:16] ppocr INFO:                             depth : 2
[2022/11/22 19:35:16] ppocr INFO:                             dims : 64
[2022/11/22 19:35:16] ppocr INFO:                             hidden_dims : 120
[2022/11/22 19:35:16] ppocr INFO:                             name : svtr
[2022/11/22 19:35:16] ppocr INFO:                             use_guide : True
[2022/11/22 19:35:16] ppocr INFO:                     SARHead : 
[2022/11/22 19:35:16] ppocr INFO:                         enc_dim : 512
[2022/11/22 19:35:16] ppocr INFO:                         max_text_length : 25
[2022/11/22 19:35:16] ppocr INFO:                 name : MultiHead
[2022/11/22 19:35:16] ppocr INFO:             Transform : None
[2022/11/22 19:35:16] ppocr INFO:             algorithm : SVTR
[2022/11/22 19:35:16] ppocr INFO:             freeze_params : False
[2022/11/22 19:35:16] ppocr INFO:             model_type : rec
[2022/11/22 19:35:16] ppocr INFO:             pretrained : None
[2022/11/22 19:35:16] ppocr INFO:             return_all_feats : True
[2022/11/22 19:35:16] ppocr INFO:     algorithm : Distillation
[2022/11/22 19:35:16] ppocr INFO:     model_type : rec
[2022/11/22 19:35:16] ppocr INFO:     name : DistillationModel
[2022/11/22 19:35:16] ppocr INFO: Eval : 
[2022/11/22 19:35:16] ppocr INFO:     dataset : 
[2022/11/22 19:35:16] ppocr INFO:         data_dir : ./RecEvalData/
[2022/11/22 19:35:16] ppocr INFO:         label_file_list : ['./rec_eval_label.txt']
[2022/11/22 19:35:16] ppocr INFO:         name : SimpleDataSet
[2022/11/22 19:35:16] ppocr INFO:         transforms : 
[2022/11/22 19:35:16] ppocr INFO:             DecodeImage : 
[2022/11/22 19:35:16] ppocr INFO:                 channel_first : False
[2022/11/22 19:35:16] ppocr INFO:                 img_mode : BGR
[2022/11/22 19:35:16] ppocr INFO:             MultiLabelEncode : None
[2022/11/22 19:35:16] ppocr INFO:             RecResizeImg : 
[2022/11/22 19:35:16] ppocr INFO:                 image_shape : [3, 48, 320]
[2022/11/22 19:35:16] ppocr INFO:             KeepKeys : 
[2022/11/22 19:35:16] ppocr INFO:                 keep_keys : ['image', 'label_ctc', 'label_sar', 'length', 'valid_ratio']
[2022/11/22 19:35:16] ppocr INFO:     loader : 
[2022/11/22 19:35:16] ppocr INFO:         batch_size_per_card : 128
[2022/11/22 19:35:16] ppocr INFO:         drop_last : False
[2022/11/22 19:35:16] ppocr INFO:         num_workers : 4
[2022/11/22 19:35:16] ppocr INFO:         shuffle : False
[2022/11/22 19:35:16] ppocr INFO: Global : 
[2022/11/22 19:35:16] ppocr INFO:     cal_metric_during_train : True
[2022/11/22 19:35:16] ppocr INFO:     character_dict_path : ./PaddleOCR/ppocr/utils/ppocr_keys_v1.txt
[2022/11/22 19:35:16] ppocr INFO:     checkpoints : None
[2022/11/22 19:35:16] ppocr INFO:     debug : False
[2022/11/22 19:35:16] ppocr INFO:     distributed : False
[2022/11/22 19:35:16] ppocr INFO:     epoch_num : 50
[2022/11/22 19:35:16] ppocr INFO:     eval_batch_step : [0, 100]
[2022/11/22 19:35:16] ppocr INFO:     infer_img : ./RecEvalData/
[2022/11/22 19:35:16] ppocr INFO:     infer_mode : False
[2022/11/22 19:35:16] ppocr INFO:     log_smooth_window : 20
[2022/11/22 19:35:16] ppocr INFO:     max_text_length : 25
[2022/11/22 19:35:16] ppocr INFO:     pretrained_model : ./output/rec_ppocr_v3_distillation/best_accuracy
[2022/11/22 19:35:16] ppocr INFO:     print_batch_step : 10
[2022/11/22 19:35:16] ppocr INFO:     save_epoch_step : 100
[2022/11/22 19:35:16] ppocr INFO:     save_inference_dir : None
[2022/11/22 19:35:16] ppocr INFO:     save_model_dir : ./output/rec_ppocr_v3_distillation
[2022/11/22 19:35:16] ppocr INFO:     save_res_path : ./output/rec_infer_res/predicts.txt
[2022/11/22 19:35:16] ppocr INFO:     use_gpu : True
[2022/11/22 19:35:16] ppocr INFO:     use_space_char : True
[2022/11/22 19:35:16] ppocr INFO:     use_visualdl : False
[2022/11/22 19:35:16] ppocr INFO: Loss : 
[2022/11/22 19:35:16] ppocr INFO:     loss_config_list : 
[2022/11/22 19:35:16] ppocr INFO:         DistillationDMLLoss : 
[2022/11/22 19:35:16] ppocr INFO:             act : softmax
[2022/11/22 19:35:16] ppocr INFO:             dis_head : ctc
[2022/11/22 19:35:16] ppocr INFO:             key : head_out
[2022/11/22 19:35:16] ppocr INFO:             model_name_pairs : [['Student', 'Teacher']]
[2022/11/22 19:35:16] ppocr INFO:             multi_head : True
[2022/11/22 19:35:16] ppocr INFO:             name : dml_ctc
[2022/11/22 19:35:16] ppocr INFO:             use_log : True
[2022/11/22 19:35:16] ppocr INFO:             weight : 1.0
[2022/11/22 19:35:16] ppocr INFO:         DistillationDMLLoss : 
[2022/11/22 19:35:16] ppocr INFO:             act : softmax
[2022/11/22 19:35:16] ppocr INFO:             dis_head : sar
[2022/11/22 19:35:16] ppocr INFO:             key : head_out
[2022/11/22 19:35:16] ppocr INFO:             model_name_pairs : [['Student', 'Teacher']]
[2022/11/22 19:35:16] ppocr INFO:             multi_head : True
[2022/11/22 19:35:16] ppocr INFO:             name : dml_sar
[2022/11/22 19:35:16] ppocr INFO:             use_log : True
[2022/11/22 19:35:16] ppocr INFO:             weight : 0.5
[2022/11/22 19:35:16] ppocr INFO:         DistillationDistanceLoss : 
[2022/11/22 19:35:16] ppocr INFO:             key : backbone_out
[2022/11/22 19:35:16] ppocr INFO:             mode : l2
[2022/11/22 19:35:16] ppocr INFO:             model_name_pairs : [['Student', 'Teacher']]
[2022/11/22 19:35:16] ppocr INFO:             weight : 1.0
[2022/11/22 19:35:16] ppocr INFO:         DistillationCTCLoss : 
[2022/11/22 19:35:16] ppocr INFO:             key : head_out
[2022/11/22 19:35:16] ppocr INFO:             model_name_list : ['Student', 'Teacher']
[2022/11/22 19:35:16] ppocr INFO:             multi_head : True
[2022/11/22 19:35:16] ppocr INFO:             weight : 1.0
[2022/11/22 19:35:16] ppocr INFO:         DistillationSARLoss : 
[2022/11/22 19:35:16] ppocr INFO:             key : head_out
[2022/11/22 19:35:16] ppocr INFO:             model_name_list : ['Student', 'Teacher']
[2022/11/22 19:35:16] ppocr INFO:             multi_head : True
[2022/11/22 19:35:16] ppocr INFO:             weight : 1.0
[2022/11/22 19:35:16] ppocr INFO:     name : CombinedLoss
[2022/11/22 19:35:16] ppocr INFO: Metric : 
[2022/11/22 19:35:16] ppocr INFO:     base_metric_name : RecMetric
[2022/11/22 19:35:16] ppocr INFO:     ignore_space : False
[2022/11/22 19:35:16] ppocr INFO:     key : Student
[2022/11/22 19:35:16] ppocr INFO:     main_indicator : acc
[2022/11/22 19:35:16] ppocr INFO:     name : DistillationMetric
[2022/11/22 19:35:16] ppocr INFO: Optimizer : 
[2022/11/22 19:35:16] ppocr INFO:     beta1 : 0.9
[2022/11/22 19:35:16] ppocr INFO:     beta2 : 0.999
[2022/11/22 19:35:16] ppocr INFO:     lr : 
[2022/11/22 19:35:16] ppocr INFO:         decay_epochs : [700, 800]
[2022/11/22 19:35:16] ppocr INFO:         name : Piecewise
[2022/11/22 19:35:16] ppocr INFO:         values : [0.0005, 5e-05]
[2022/11/22 19:35:16] ppocr INFO:         warmup_epoch : 5
[2022/11/22 19:35:16] ppocr INFO:     name : Adam
[2022/11/22 19:35:16] ppocr INFO:     regularizer : 
[2022/11/22 19:35:16] ppocr INFO:         factor : 3e-05
[2022/11/22 19:35:16] ppocr INFO:         name : L2
[2022/11/22 19:35:16] ppocr INFO: PostProcess : 
[2022/11/22 19:35:16] ppocr INFO:     key : head_out
[2022/11/22 19:35:16] ppocr INFO:     model_name : ['Student', 'Teacher']
[2022/11/22 19:35:16] ppocr INFO:     multi_head : True
[2022/11/22 19:35:16] ppocr INFO:     name : DistillationCTCLabelDecode
[2022/11/22 19:35:16] ppocr INFO: Train : 
[2022/11/22 19:35:16] ppocr INFO:     dataset : 
[2022/11/22 19:35:16] ppocr INFO:         data_dir : ./RecTrainData/
[2022/11/22 19:35:16] ppocr INFO:         ext_op_transform_idx : 1
[2022/11/22 19:35:16] ppocr INFO:         label_file_list : ['./rec_train_label.txt']
[2022/11/22 19:35:16] ppocr INFO:         name : SimpleDataSet
[2022/11/22 19:35:16] ppocr INFO:         transforms : 
[2022/11/22 19:35:16] ppocr INFO:             DecodeImage : 
[2022/11/22 19:35:16] ppocr INFO:                 channel_first : False
[2022/11/22 19:35:16] ppocr INFO:                 img_mode : BGR
[2022/11/22 19:35:16] ppocr INFO:             RecConAug : 
[2022/11/22 19:35:16] ppocr INFO:                 ext_data_num : 2
[2022/11/22 19:35:16] ppocr INFO:                 image_shape : [48, 320, 3]
[2022/11/22 19:35:16] ppocr INFO:                 max_text_length : 25
[2022/11/22 19:35:16] ppocr INFO:                 prob : 0.5
[2022/11/22 19:35:16] ppocr INFO:             RecAug : None
[2022/11/22 19:35:16] ppocr INFO:             MultiLabelEncode : None
[2022/11/22 19:35:16] ppocr INFO:             RecResizeImg : 
[2022/11/22 19:35:16] ppocr INFO:                 image_shape : [3, 48, 320]
[2022/11/22 19:35:16] ppocr INFO:             KeepKeys : 
[2022/11/22 19:35:16] ppocr INFO:                 keep_keys : ['image', 'label_ctc', 'label_sar', 'length', 'valid_ratio']
[2022/11/22 19:35:16] ppocr INFO:     loader : 
[2022/11/22 19:35:16] ppocr INFO:         batch_size_per_card : 128
[2022/11/22 19:35:16] ppocr INFO:         drop_last : True
[2022/11/22 19:35:16] ppocr INFO:         num_workers : 4
[2022/11/22 19:35:16] ppocr INFO:         shuffle : True
[2022/11/22 19:35:16] ppocr INFO: profiler_options : None
[2022/11/22 19:35:16] ppocr INFO: train with paddle 2.3.2 and device Place(gpu:0)
[2022/11/22 19:35:21] ppocr INFO: load pretrain successful from ./output/rec_ppocr_v3_distillation/best_accuracy
[2022/11/22 19:35:21] ppocr INFO: infer_img: ./RecEvalData/0_1-122720001-OCR-AS-B01.jpg
[2022/11/22 19:35:27] ppocr INFO: 	 result: {"Student": {"label": "EITU1786393", "score": 0.9824612140655518}, "Teacher": {"label": "EITU1786393", "score": 0.9511095285415649}}
[2022/11/22 19:35:27] ppocr INFO: infer_img: ./RecEvalData/0_1-122720001-OCR-LB-C02.jpg
[2022/11/22 19:35:27] ppocr INFO: 	 result: {"Student": {"label": "EITU1786393", "score": 0.9859008193016052}, "Teacher": {"label": "EITU1786393", "score": 0.9860246777534485}}
[2022/11/22 19:35:27] ppocr INFO: infer_img: ./RecEvalData/0_1-122720001-OCR-RF-D01.jpg
[2022/11/22 19:35:27] ppocr INFO: 	 result: {"Student": {"label": "EITU1786393", "score": 0.9981781244277954}, "Teacher": {"label": "EITU1786393", "score": 0.9979627728462219}}
[2022/11/22 19:35:27] ppocr INFO: infer_img: ./RecEvalData/0_1-122728001-OCR-RF-D01.jpg
[2022/11/22 19:35:27] ppocr INFO: 	 result: {"Student": {"label": "DFSU4119250", "score": 0.9132381677627563}, "Teacher": {"label": "DFSU4119250", "score": 0.9551454782485962}}
......
[2022/11/22 19:36:37] ppocr INFO: infer_img: ./RecEvalData/2_1-154748001-OCR-AS-B01.jpg
[2022/11/22 19:36:37] ppocr INFO: 	 result: {"Student": {"label": "22G1", "score": 0.9983863234519958}, "Teacher": {"label": "22G1", "score": 0.9987906813621521}}
[2022/11/22 19:36:37] ppocr INFO: infer_img: ./RecEvalData/2_1-155210001-OCR-RF-D01.jpg
[2022/11/22 19:36:37] ppocr INFO: 	 result: {"Student": {"label": "22G1", "score": 0.9938058257102966}, "Teacher": {"label": "22G1", "score": 0.9972647428512573}}
[2022/11/22 19:36:37] ppocr INFO: infer_img: ./RecEvalData/2_1-155227001-OCR-RF-D01.jpg
[2022/11/22 19:36:37] ppocr INFO: 	 result: {"Student": {"label": "L5G1", "score": 0.9624487161636353}, "Teacher": {"label": "L5G1", "score": 0.946576714515686}}
[2022/11/22 19:36:37] ppocr INFO: infer_img: ./RecEvalData/2_1-155800001-OCR-LB-C02.jpg
[2022/11/22 19:36:37] ppocr INFO: 	 result: {"Student": {"label": "22G1", "score": 0.9714831113815308}, "Teacher": {"label": "22G1", "score": 0.9647958874702454}}
[2022/11/22 19:36:37] ppocr INFO: infer_img: ./RecEvalData/3_1-124902001-OCR-RF-D01.jpg
[2022/11/22 19:36:37] ppocr INFO: 	 result: {"Student": {"label": "1", "score": 0.9570513963699341}, "Teacher": {"label": "1", "score": 0.9826142191886902}}
[2022/11/22 19:36:37] ppocr INFO: infer_img: ./RecEvalData/3_1-133046001-OCR-AH-A01.jpg
[2022/11/22 19:36:37] ppocr INFO: 	 result: {"Student": {"label": "U", "score": 0.6551735997200012}, "Teacher": {"label": "U", "score": 0.6450684666633606}}
[2022/11/22 19:36:37] ppocr INFO: infer_img: ./RecEvalData/4_1-133046001-OCR-AH-A01.jpg
[2022/11/22 19:36:37] ppocr INFO: 	 result: {"Student": {"label": "2", "score": 0.9352047443389893}, "Teacher": {"label": "2", "score": 0.8710258603096008}}
[2022/11/22 19:36:37] ppocr INFO: infer_img: ./RecEvalData/5_1-133046001-OCR-AH-A01.jpg
[2022/11/22 19:36:37] ppocr INFO: 	 result: {"Student": {"label": "9", "score": 0.9969731569290161}, "Teacher": {"label": "9", "score": 0.9953775405883789}}
[2022/11/22 19:36:37] ppocr INFO: infer_img: ./RecEvalData/6_1-133046001-OCR-AH-A01.jpg
[2022/11/22 19:36:37] ppocr INFO: 	 result: {"Student": {"label": "0", "score": 0.9937646389007568}, "Teacher": {"label": "0", "score": 0.9952432513237}}
[2022/11/22 19:36:37] ppocr INFO: infer_img: ./RecEvalData/7_1-133046001-OCR-AH-A01.jpg
[2022/11/22 19:36:37] ppocr INFO: 	 result: {"Student": {"label": "1", "score": 0.6171978116035461}, "Teacher": {"label": "1", "score": 0.9941883087158203}}
[2022/11/22 19:36:37] ppocr INFO: infer_img: ./RecEvalData/8_1-133046001-OCR-AH-A01.jpg
[2022/11/22 19:36:37] ppocr INFO: 	 result: {"Student": {"label": "0", "score": 0.6773194074630737}, "Teacher": {"label": "0", "score": 0.7497578263282776}}
[2022/11/22 19:36:37] ppocr INFO: infer_img: ./RecEvalData/9_1-133046001-OCR-AH-A01.jpg
[2022/11/22 19:36:37] ppocr INFO: 	 result: {"Student": {"label": "2", "score": 0.9989407658576965}, "Teacher": {"label": "2", "score": 0.9984425902366638}}
[2022/11/22 19:36:37] ppocr INFO: success!

6.3 检测识别模型串联推理

6.3.1 模型转换

在串联推理前首先需要将训练保存的模型转换成推理模型,分别执行如下检测命令即可。其中,

  • -c传入要转换模型的配置文件路径,

  • -o Global.pretrained_model为要被转换的模型文件,

  • Global.save_inference_dir为转换得到推理模型的储存路径

# 检测模型转换
%run PaddleOCR/tools/export_model.py \
-c PaddleOCR/configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_student.yml \
-o Global.pretrained_model="./output/ch_PP-OCR_V3_det/best_accuracy" Global.save_inference_dir="./output/det_inference/"
[2022/11/22 19:53:25] ppocr INFO: load pretrain successful from ./output/ch_PP-OCR_V3_det/best_accuracy
[2022/11/22 19:53:28] ppocr INFO: inference model is saved to ./output/det_inference/inference
# 识别模型转换
%run PaddleOCR/tools/export_model.py \
-c PaddleOCR/configs/rec/PP-OCRv3/ch_PP-OCRv3_rec_distillation.yml \
-o Global.pretrained_model="./output/rec_ppocr_v3_distillation/best_accuracy" Global.save_inference_dir="./output/rec_inference/"
[2022/11/22 19:53:49] ppocr INFO: load pretrain successful from ./output/rec_ppocr_v3_distillation/best_accuracy
[2022/11/22 19:53:50] ppocr INFO: inference model is saved to ./output/rec_inference/Teacher/inference
[2022/11/22 19:53:51] ppocr INFO: inference model is saved to ./output/rec_inference/Student/inference

6.3.2 模型串联推理

转换完毕后,PaddleOCR提供了检测和识别模型的串联工具,可以将训练好的任一检测模型和任一识别模型串联成两阶段的文本识别系统。

输入图像经过文本检测、检测框矫正、文本识别、得分过滤四个主要阶段输出文本位置和识别结果。

执行代码如下,其中

image_dir为单张图像或者图像集合的路径,

det_model_dir为检测inference模型的路径,

rec_model_dir为识别inference模型的路径。

可视化识别结果默认保存到 ./inference_results 文件夹里面。

%run PaddleOCR/tools/infer/predict_system.py \
--image_dir="dataset/OCRTest" \
--det_model_dir="./output/det_inference/" \
--rec_model_dir="./output/rec_inference/Student/"
[2022/11/22 20:14:49] ppocr INFO: In PP-OCRv3, rec_image_shape parameter defaults to '3, 48, 320', if you are using recognition model with PP-OCRv2 or an older version, please set --rec_image_shape='3,32,320
[2022/11/22 20:14:52] ppocr DEBUG: dt_boxes num : 2, elapse : 2.663893222808838
[2022/11/22 20:14:52] ppocr DEBUG: rec_res num  : 2, elapse : 0.01429438591003418
[2022/11/22 20:14:52] ppocr DEBUG: 0  Predict time of dataset/OCRTest/1-122700001-OCR-RF-D01.jpg: 2.687s
[2022/11/22 20:14:52] ppocr DEBUG: 22G1, 0.814
[2022/11/22 20:14:52] ppocr DEBUG: TEMU3108252, 0.907
[2022/11/22 20:14:52] ppocr DEBUG: The visualized image saved in ./inference_results/1-122700001-OCR-RF-D01.jpg
[2022/11/22 20:14:52] ppocr DEBUG: dt_boxes num : 2, elapse : 0.03417468070983887
[2022/11/22 20:14:52] ppocr DEBUG: rec_res num  : 2, elapse : 0.010810136795043945
[2022/11/22 20:14:52] ppocr DEBUG: 1  Predict time of dataset/OCRTest/1-122728001-OCR-LB-C02.jpg: 0.054s
[2022/11/22 20:14:52] ppocr DEBUG: DFSU4119250, 0.953
[2022/11/22 20:14:52] ppocr DEBUG: 42G1, 0.971
[2022/11/22 20:14:52] ppocr DEBUG: The visualized image saved in ./inference_results/1-122728001-OCR-LB-C02.jpg
[2022/11/22 20:14:52] ppocr DEBUG: dt_boxes num : 2, elapse : 0.04606175422668457
[2022/11/22 20:14:52] ppocr DEBUG: rec_res num  : 2, elapse : 0.01572728157043457
[2022/11/22 20:14:52] ppocr DEBUG: 2  Predict time of dataset/OCRTest/1-122738001-OCR-RF-D01.jpg: 0.067s
[2022/11/22 20:14:52] ppocr DEBUG: IRSU2657681, 0.961
[2022/11/22 20:14:52] ppocr DEBUG: 22G1, 0.990
[2022/11/22 20:14:53] ppocr DEBUG: The visualized image saved in ./inference_results/1-122738001-OCR-RF-D01.jpg
[2022/11/22 20:14:53] ppocr DEBUG: dt_boxes num : 2, elapse : 0.032082319259643555
[2022/11/22 20:14:53] ppocr DEBUG: rec_res num  : 2, elapse : 0.009961605072021484
[2022/11/22 20:14:53] ppocr DEBUG: 3  Predict time of dataset/OCRTest/1-122740001-OCR-AS-B01.jpg: 0.048s
[2022/11/22 20:14:53] ppocr DEBUG: MRKU4306585, 0.977
[2022/11/22 20:14:53] ppocr DEBUG: 45G1, 0.952
[2022/11/22 20:14:53] ppocr DEBUG: The visualized image saved in ./inference_results/1-122740001-OCR-AS-B01.jpg
[2022/11/22 20:14:53] ppocr DEBUG: dt_boxes num : 2, elapse : 0.03204154968261719
[2022/11/22 20:14:53] ppocr DEBUG: rec_res num  : 2, elapse : 0.01087331771850586
[2022/11/22 20:14:53] ppocr DEBUG: 4  Predict time of dataset/OCRTest/1-122749001-OCR-AS-B01.jpg: 0.048s
[2022/11/22 20:14:53] ppocr DEBUG: FCGU4996010, 0.926
[2022/11/22 20:14:53] ppocr DEBUG: 42G1, 0.861
[2022/11/22 20:14:53] ppocr DEBUG: The visualized image saved in ./inference_results/1-122749001-OCR-AS-B01.jpg
[2022/11/22 20:14:53] ppocr DEBUG: dt_boxes num : 1, elapse : 0.03950977325439453
[2022/11/22 20:14:53] ppocr DEBUG: rec_res num  : 1, elapse : 0.010022163391113281
[2022/11/22 20:14:53] ppocr DEBUG: 5  Predict time of dataset/OCRTest/1-122749001-OCR-RF-D01.jpg: 0.056s
[2022/11/22 20:14:53] ppocr DEBUG: FCGU4996010, 0.936
[2022/11/22 20:14:53] ppocr DEBUG: The visualized image saved in ./inference_results/1-122749001-OCR-RF-D01.jpg
[2022/11/22 20:14:53] ppocr DEBUG: dt_boxes num : 2, elapse : 0.03342747688293457
[2022/11/22 20:14:53] ppocr DEBUG: rec_res num  : 2, elapse : 0.012051820755004883
[2022/11/22 20:14:53] ppocr DEBUG: 6  Predict time of dataset/OCRTest/1-122830001-OCR-LB-C02.jpg: 0.055s
[2022/11/22 20:14:53] ppocr DEBUG: 42G1, 0.994
[2022/11/22 20:14:53] ppocr DEBUG: MEDU4024195, 0.911
[2022/11/22 20:14:54] ppocr DEBUG: The visualized image saved in ./inference_results/1-122830001-OCR-LB-C02.jpg
[2022/11/22 20:14:54] ppocr DEBUG: dt_boxes num : 2, elapse : 0.032006263732910156
[2022/11/22 20:14:54] ppocr DEBUG: rec_res num  : 2, elapse : 0.010721683502197266
[2022/11/22 20:14:54] ppocr DEBUG: 7  Predict time of dataset/OCRTest/1-122856001-OCR-LB-C02.jpg: 0.049s
[2022/11/22 20:14:54] ppocr DEBUG: FCIU5949601, 0.951
[2022/11/22 20:14:54] ppocr DEBUG: 22G1, 0.915
[2022/11/22 20:14:54] ppocr DEBUG: The visualized image saved in ./inference_results/1-122856001-OCR-LB-C02.jpg
[2022/11/22 20:14:54] ppocr DEBUG: dt_boxes num : 2, elapse : 0.04093623161315918
[2022/11/22 20:14:54] ppocr DEBUG: rec_res num  : 2, elapse : 0.01970195770263672
......
[2022/11/22 20:17:22] ppocr DEBUG: The visualized image saved in ./inference_results/1-155405001-OCR-LB-C02.jpg
[2022/11/22 20:17:22] ppocr DEBUG: dt_boxes num : 1, elapse : 0.030061006546020508
[2022/11/22 20:17:22] ppocr DEBUG: rec_res num  : 1, elapse : 0.008541584014892578
[2022/11/22 20:17:22] ppocr DEBUG: 687  Predict time of dataset/OCRTest/1-155428001-OCR-AH-A01.jpg: 0.044s
[2022/11/22 20:17:22] ppocr DEBUG: TRHU259949, 0.951
[2022/11/22 20:17:22] ppocr DEBUG: The visualized image saved in ./inference_results/1-155428001-OCR-AH-A01.jpg
[2022/11/22 20:17:22] ppocr DEBUG: dt_boxes num : 2, elapse : 0.030470848083496094
[2022/11/22 20:17:22] ppocr DEBUG: rec_res num  : 2, elapse : 0.010222911834716797
[2022/11/22 20:17:22] ppocr DEBUG: 688  Predict time of dataset/OCRTest/1-155430001-OCR-LB-C02.jpg: 0.046s
[2022/11/22 20:17:22] ppocr DEBUG: TRLU8274540, 0.946
[2022/11/22 20:17:22] ppocr DEBUG: 15G1, 0.835
[2022/11/22 20:17:22] ppocr DEBUG: The visualized image saved in ./inference_results/1-155430001-OCR-LB-C02.jpg
[2022/11/22 20:17:22] ppocr DEBUG: dt_boxes num : 1, elapse : 0.02996039390563965
[2022/11/22 20:17:22] ppocr DEBUG: rec_res num  : 1, elapse : 0.008486032485961914
[2022/11/22 20:17:22] ppocr DEBUG: 689  Predict time of dataset/OCRTest/1-155431001-OCR-RF-D01.jpg: 0.043s
[2022/11/22 20:17:22] ppocr DEBUG: TEMU0723767, 0.970
[2022/11/22 20:17:22] ppocr DEBUG: The visualized image saved in ./inference_results/1-155431001-OCR-RF-D01.jpg
[2022/11/22 20:17:22] ppocr DEBUG: dt_boxes num : 1, elapse : 0.02987504005432129
[2022/11/22 20:17:22] ppocr DEBUG: rec_res num  : 1, elapse : 0.008971691131591797
[2022/11/22 20:17:22] ppocr DEBUG: 690  Predict time of dataset/OCRTest/1-155528001-OCR-AH-A01.jpg: 0.044s
[2022/11/22 20:17:22] ppocr DEBUG: UESU5131167, 0.992
[2022/11/22 20:17:22] ppocr DEBUG: The visualized image saved in ./inference_results/1-155528001-OCR-AH-A01.jpg
[2022/11/22 20:17:22] ppocr DEBUG: dt_boxes num : 1, elapse : 0.03020930290222168
[2022/11/22 20:17:22] ppocr DEBUG: rec_res num  : 1, elapse : 0.00933837890625
[2022/11/22 20:17:22] ppocr DEBUG: 691  Predict time of dataset/OCRTest/1-155554001-OCR-RF-D01.jpg: 0.043s
[2022/11/22 20:17:22] ppocr DEBUG: LGU6263148, 0.950
[2022/11/22 20:17:23] ppocr DEBUG: The visualized image saved in ./inference_results/1-155554001-OCR-RF-D01.jpg
[2022/11/22 20:17:23] ppocr DEBUG: dt_boxes num : 1, elapse : 0.029514074325561523
[2022/11/22 20:17:23] ppocr DEBUG: rec_res num  : 1, elapse : 0.00953054428100586
[2022/11/22 20:17:23] ppocr DEBUG: 692  Predict time of dataset/OCRTest/1-155612001-OCR-AH-A01.jpg: 0.045s
[2022/11/22 20:17:23] ppocr DEBUG: MSKU0539301, 0.973
[2022/11/22 20:17:23] ppocr DEBUG: The visualized image saved in ./inference_results/1-155612001-OCR-AH-A01.jpg
[2022/11/22 20:17:23] ppocr DEBUG: dt_boxes num : 2, elapse : 0.04407095909118652
[2022/11/22 20:17:23] ppocr DEBUG: rec_res num  : 2, elapse : 0.016852855682373047
[2022/11/22 20:17:23] ppocr DEBUG: 693  Predict time of dataset/OCRTest/1-155745001-OCR-RF-D01.jpg: 0.067s
[2022/11/22 20:17:23] ppocr DEBUG: FCIU5288353, 0.968
[2022/11/22 20:17:23] ppocr DEBUG: 22G1, 0.967
[2022/11/22 20:17:23] ppocr DEBUG: The visualized image saved in ./inference_results/1-155745001-OCR-RF-D01.jpg
[2022/11/22 20:17:23] ppocr DEBUG: dt_boxes num : 2, elapse : 0.04364299774169922
[2022/11/22 20:17:23] ppocr DEBUG: rec_res num  : 2, elapse : 0.011179685592651367
[2022/11/22 20:17:23] ppocr DEBUG: 694  Predict time of dataset/OCRTest/1-155758001-OCR-LB-C02.jpg: 0.061s
[2022/11/22 20:17:23] ppocr DEBUG: CMAU4966960, 0.902
[2022/11/22 20:17:23] ppocr DEBUG: 45G1, 0.872
[2022/11/22 20:17:23] ppocr DEBUG: The visualized image saved in ./inference_results/1-155758001-OCR-LB-C02.jpg
[2022/11/22 20:17:24] ppocr DEBUG: dt_boxes num : 1, elapse : 0.19166111946105957
[2022/11/22 20:17:24] ppocr DEBUG: rec_res num  : 1, elapse : 0.011732816696166992
[2022/11/22 20:17:24] ppocr DEBUG: 695  Predict time of dataset/OCRTest/1-155801001-OCR-AH-A01.jpg: 0.210s
[2022/11/22 20:17:24] ppocr DEBUG: CAIU9857547, 0.996
[2022/11/22 20:17:24] ppocr DEBUG: The visualized image saved in ./inference_results/1-155801001-OCR-AH-A01.jpg
[2022/11/22 20:17:24] ppocr INFO: The predict total time is 154.57923460006714

七、可视化结果展示

Image

左侧为待识别集装箱,右侧为箱号识别结果

PaddleOCR

PaddleOCR 是一种基于百度飞桨的 OCR 工具库,包含总模型仅 8.6M 的超轻量级中文 OCR,同时支持多种文本检测、文本识别的训练算法、服务部署和端侧部署。

更多详情请访问:https://github.com/PaddlePaddle/PaddleOCR

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/26614.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

在host上窥探kvm虚拟机内存

1. kvm内存虚拟化 kvm虚拟机的内存虚拟化&#xff0c;使用了内存转换技术&#xff0c;过程如下&#xff1a;GVA -> GPA -> HVA -> HPA 通过qemu启动了一个8G内存的虚拟机&#xff0c;查看内存smaps&#xff0c;可以发现有个内存就是8G&#xff0c;这个就是guest所使用…

Pioneer | X METAVERSE PRO Explores the New Value of “Mining + Finance“

“The mining boom driven by Bitcoin has created many wealth myths: miners can earn 50 BTC every 10 minutes at that time. If you successfully get a Bitcoin block and hold it since 2009, you will have BTC worth $827,930 in your wallet by 2022. “ Cryptocurr…

AE插件:Composite Brush Mac(画面颜色选取替换修改)

Composite Brush for Mac是一款由AEscripts出品的AE画面颜色选取替换修改插件&#xff0c;可以直接在视频画面上选取颜色&#xff0c;然后对选择部分修改替换成自己需要的颜色&#xff0c;有了Composite Brush插件用户可以直接在视频画面上选取自己想要的颜色。 单击并拖动&am…

图像运算和图像增强十一

图像运算和图像增强十一 图像锐化之 Scharr、Canny、LOG 实现边缘检测 &#xff08;1&#xff09;Scharr算子 Scharr算子又称为Scharr滤波器&#xff0c;也是计算x或y方向上的图像差分。Scharr 算子的函数原型如下所示&#xff0c;和 Sobel 算子几乎一致&#xff0c;只是没有…

服务器的区别跟服务器被攻击了怎么解决

大陆服务器都是需要备案的&#xff0c;想必这是众所周知的&#xff0c;备案的过程繁琐且严格。除此之外&#xff0c;备案还有期限的限制&#xff0c;若网站没有在规定的期限内完成备案&#xff0c;可能会导致我们不能在相应的时间内完成建站。而海外服务器是不存在备案的问题的…

【读论文】DIVFusion: Darkness-free infrared and visible image fusion

【读论文】DIVFusion: Darkness-free infrared and visible image fusion介绍网络结构SIDNet损失函数TCEFNetGRM&#xff08;梯度保持模块&#xff09;CEM&#xff08;对比度增强模块&#xff09;损失函数总结参考论文&#xff1a;https://www.sciencedirect.com/science/artic…

IPv6与VoIP——ipv6接口标识与VoIP概述

作者简介&#xff1a;一名在校云计算网络运维学生、每天分享网络运维的学习经验、和学习笔记。 座右铭&#xff1a;低头赶路&#xff0c;敬事如仪 个人主页&#xff1a;网络豆的主页​​​​​​ 目录 前言 一.ipv6接口标识符 1.IPv6接口标识符有以下几种 基于EUI-64地址…

[附源码]java毕业设计校园一卡通管理信息系统台

项目运行 环境配置&#xff1a; Jdk1.8 Tomcat7.0 Mysql HBuilderX&#xff08;Webstorm也行&#xff09; Eclispe&#xff08;IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持&#xff09;。 项目技术&#xff1a; SSM mybatis Maven Vue 等等组成&#xff0c;B/S模式 M…

Go:交互式提示工具go-prompt简介

文章目录简介一、代码示例二、使用go-prompt的项目三、特性1. 强大的自动完成2. 灵活的功能选项3. 快捷键4. 历史记录5. 跨平台支持小结简介 受python提示工具包的启发&#xff0c;在Go中构建强大的交互式提示 一、代码示例 package mainimport ("fmt""githu…

Oracle在Logstash需求中碰到的问题处理方式

Oracle对空值(NULL)的5种处理 在公司Logstash相关需求中,为了方便sql语句更加简洁,所以需要使用到Oracle中的视图,在视图创建过程中,遇到有关对Null值的处理,这里做一个整理,方便日后查询 COALESCE函数 COALESCE&#xff08;expr1&#xff0c;expr2&#xff0c;expr3&#x…

【python】PyQt5的环境搭建和使用

什么是pyQT pyqt是一个用于创建GUI应用程序的跨平台工具包&#xff0c;它将python与qt库融为一体。也就是说&#xff0c;pyqt允许使用python语言调用qt库中的API。这样做的最大好处就是在保存了qt高运行效率的同时&#xff0c;大大提高开发效率。因为&#xff0c;使用python语…

【Spring Cloud实战】SpringCloud Sleuth分布式请求链路跟踪

gitee地址&#xff1a;https://gitee.com/javaxiaobear/spring-cloud_study.git 在线阅读地址&#xff1a;https://javaxiaobear.gitee.io/ 1、概述 在微服务框架中&#xff0c;一个由客户端发起的请求在后端系统中会经过多个不同的的服务节点调用来协同产生最后的请求结果&…

HTML5期末大作业 HTML+CSS+JavaScript美食坊美食购物主题(15页)

&#x1f380; 精彩专栏推荐&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb; ✍️ 作者简介: 一个热爱把逻辑思维转变为代码的技术博主 &#x1f482; 作者主页: 【主页——&#x1f680;获取更多优质源码】 &#x1f393; web前端期末大作业…

数据上云,如何解除用户对厂商监守自盗的担忧?

企业数字化转型中&#xff0c;安全从来都是企业用户最为关心和敏感的问题之一。对于数据上云&#xff0c;很多企业持保留态度。作为数字化转型服务商&#xff0c;如何解除用户对厂商监守自盗的担忧&#xff1f; 1.敏感的数据安全与用户的普遍认识 企业用户普遍对数据安全是极其…

湖北绝缘监测仪矿业煤炭石油金矿玉矿铁矿铜矿矿井钢厂

安科瑞 华楠 自第一次工业革命开始&#xff0c;人类社会进入工业时代。随着工业科技的发展&#xff0c;漏电流对工业生产安全构成了很大的威胁。为了提高供电的连续性、可靠性和安全性&#xff0c;许多重要生产场所也采用了IT配电系统&#xff08;不接地供电系统&#xff09;。…

使用CyberController来将旧手机改造成电脑外挂------手机交互翻译、人脸解锁、语音识别....各个功能等你来探索

文章目录前言操作PC端安装Python环境调试代码设置开机启动HMS Core API申请注册账号创建应用填写基本信息填写应用信息软件图标应用的截图应用分类API信息设置添加对应的包名勾选机器学习服务复制API信息将JSON信息保存下来安卓端安装开发工具修改源码克隆项目打开项目修改包名…

水滴邮件营销:让企业营销更简单

企业在利用邮件开发客户、推广产品的时候&#xff0c;最终目的是想产生转化&#xff0c;获得收益。邮件营销有他得天独厚的优势&#xff0c;它为买卖双方提供了一个交流平台&#xff0c;并且只要收件人同意&#xff0c;企业就可以长期对其进行个性化营销。这为企业积累长期忠实…

缘来交友网站的设计与实现(源码+数据库+论文+开题报告+说明文档)

项目描述 临近学期结束&#xff0c;还是毕业设计&#xff0c;你还在做java程序网络编程&#xff0c;期末作业&#xff0c;老师的作业要求觉得大了吗?不知道毕业设计该怎么办?网页功能的数量是否太多?没有合适的类型或系统?等等。这里根据疫情当下&#xff0c;你想解决的问…

DDANet: Dual Decoder Attention Network for Automatic Polyp Segmentation

双decoder用于息肉分割。文章的创新点在与使用了双分支的decoder&#xff0c;单encoder的结构。decoder的第二个分支会产生注意力map&#xff0c;在代码中体现为输出通道为1。这个和之前看的confidence map很像。 看一下文章的结构图&#xff1a; 在decoder中&#xff0c;第二…

小米手机买什么蓝牙耳机好?适配小米手机的蓝牙耳机推荐

作为一位音乐爱好者&#xff0c;拥有一款好的耳机是非常重要的。无线蓝牙耳机的出现就为喜欢听音乐的伙伴们提供了一个很好的选择&#xff0c;既不会有耳朵的胀痛&#xff0c;也不会影响享受音乐的体验&#xff0c;小米手机近几年也是深受大众欢迎&#xff0c;因此&#xff0c;…