python爬虫之Scrapy框架,基本介绍使用以及用框架下载图片案例

news2024/11/22 17:50:34

一、Scrapy框架简介

Scrapy是:由Python语言开发的一个快速、高层次的屏幕抓取和web抓取框架,用于抓取web站点并从页面中提取结构化的数据,只需要实现少量的代码,就能够快速的抓取。

Scrapy使用了Twisted异步网络框架来处理网络通信,可以加快我们的下载速度,不用自己去实现异步框架,并且包含了各种中间件接口,可以灵活地实现各种需求。

Scrapy可以应用在包括数据挖掘、信息处理或存储历史数据等一系列的程序中,其最初是为页面抓取(更确切地说是网络抓取)而设计的,也可以应用于获取API所返回的数据(例如Amazon Associates Web Services)或者通用的网络爬虫。

二、Scrapy架构

1、架构图

官方架构图
在这里插入图片描述
翻译架构图
在这里插入图片描述

2、组件

Scrapy主要包括了以下组件:

  • 爬虫中间件(Spider Middleware):位于Scrapy引擎和爬虫之间的框架,主要用于处理爬虫的响应输入和请求输出。
  • 调度器中间件(Scheduler Middleware):位于Scrapy引擎和调度器之间的框架,主要用于处理从Scrapy引擎发送到调度器的请求和响应。
  • 调度器(Scheduler):用来接收引擎发过来的请求,压入队列中,并在引擎再次请求的时候返回。它就像是一个URL的优先队列,由它来决定下一个要抓取的网址是什么,同时在这里会去除重复的网址。
  • 下载器中间件(Downloader Middleware):位于Scrapy引擎和下载器之间的框架,主要用于处理Scrapy引擎与下载器之间的请求及响应。代理IP和用户代理可以在这里设置。
  • 下载器(Downloader):用于下载网页内容,并将网页内容返回给爬虫。
    Scrapy引擎(ScrapyEngine):用来控制整个系统的数据处理流程,并进行事务处理的触发。
  • 爬虫(Spiders):爬虫主要是干活的,用于从特定网页中提取自己需要的信息,即所谓的项目(又称实体)。也可以从中提取URL,让Scrapy继续爬取下一个页面。
  • 项目管道(Pipeline):负责处理爬虫从网页中爬取的项目,主要的功能就是持久化项目、验证项目的有效性、清除不需要的信息。当页面被爬虫解析后,将被送到项目管道,并经过几个特定的次序来处理其数据。

3、运行流程

数据流(Data flow),Scrapy中的数据流由执行引擎(ScrapyEngine)控制,其过程如下:

  1. 引擎打开一个网站(open a domain),找到处理该网站的Spider并向该spider请求第一个要爬取的URL(s)。
  2. 引擎从Spider中获取到第一个要爬取的URL并在调度器(Scheduler)以Request调度。
  3. 引擎向调度器请求下一个要爬取的URL。
  4. 调度器返回下一个要爬取的URL给引擎,引擎将URL通过下载中间件(请求(request)方向)转发给下载器(Downloader)。
  5. 一旦页面下载完毕,下载器生成一个该页面的Response,并将其通过下载中间件(返回(response)方向)发送给引擎。
  6. 引擎从下载器中接收到Response并通过Spider中间件(输入方向)发送给Spider处理。
  7. Spider处理Response并返回爬取到的Item及(跟进的)新的Request给引擎。
  8. 引擎将(Spider返回的)爬取到的Item给Item Pipeline,将(Spider返回的)Request给调度器。
  9. (从第二步)重复直到调度器中没有更多地request,引擎关闭该网站

三、Scrapy安装以及生成项目

1、下载安装

Linux下载方式,直接安装

pip install scrapy
或者
pip3  install scrapy)

windows 如果用Pycharm的话,在Pycharm底部打开命令终端
在这里插入图片描述
输入命令

pip install scrapy

2、创建Scrapy项目

#创建一个叫ScrapyDemmo
scrapy startproject ScrapyDemmo
#进入项目文件夹
cd ScrapyDemmo
#创建一个名为baidu的爬虫,爬虫目标www.baidu.com
scrapy genspider baidu www.baidu.com

创建完成后,目录结构如下:
在这里插入图片描述

  • scrapy.cfg: 项目的配置文件。
  • scrapyspider/: 该项目的python模块。之后您将在此加入代码。
  • scrapyspider/items.py: 项目中的item文件。
  • scrapyspider/pipelines.py: 项目中的pipelines文件。
  • scrapyspider/settings.py: 项目的设置文件。
  • scrapyspider/spiders/: 放置spider代码的目录。

spiders下的baidu.py是scrapy用命令(scrapy genspider baidu www.baidu.com)自动为我们生成的。
内容如下:

import scrapy

class BaiduSpider(scrapy.Spider):
    name = 'baidu'
    allowed_domains = ['www.baidu.com']
    start_urls = ['http://www.baidu.com/']

    def parse(self, response):
        title = response.xpath('//html/dead/title/text()')
        print(title)

当然,可以不用命令生成,可以自己在spiders下创建爬虫,您必须继承 scrapy.Spider 类, 且定义以下三个属性:

  • name: 用于区别Spider。 该名字必须是唯一的,您不可以为不同的Spider设定相同的名字。
  • start_urls: 包含了Spider在启动时进行爬取的url列表。 因此,第一个被获取到的页面将是其中之一。 后续的URL则从初始的URL获取到的数据中提取。
  • parse() 是spider的一个方法。 被调用时,每个初始URL完成下载后生成的 Response 对象将会作为唯一的参数传递给该函数。 该方法负责解析返回的数据(response data),提取数据(生成item)以及生成需要进一步处理的URL的 Request 对象。

3、运行爬虫

运行方法:
在项目目录底下用命令运行,如下,我项目目录 D:\Python\ScrapyDemmo,运行name为baidu的爬虫

 D:\Python\ScrapyDemmo> scrapy crawl baidu

在scrapy中,为了避免每一次运行或调试都输入一串命令,可以在项目文件下新建一个run.py文件,每次运行爬虫只需要运行此脚本即可。且运行调试模式也需要设置此启动脚本。

from scrapy import cmdline

cmdline.execute("scrapy crawl baidu".split())

最后运行这个run.py即可,执行结果:

D:\Python\venv\Scripts\python.exe D:\Python\ScrapyDemmo\ScrapyDemmo\run.py 
2022-10-28 10:12:55 [scrapy.utils.log] INFO: Scrapy 2.7.0 started (bot: ScrapyDemmo)
2022-10-28 10:12:55 [scrapy.utils.log] INFO: Versions: lxml 4.9.1.0, libxml2 2.9.12, cssselect 1.1.0, parsel 1.6.0, w3lib 2.0.1, Twisted 22.8.0, Python 3.9.13 (tags/v3.9.13:6de2ca5, May 17 2022, 16:36:42) [MSC v.1929 64 bit (AMD64)], pyOpenSSL 22.1.0 (OpenSSL 3.0.5 5 Jul 2022), cryptography 38.0.1, Platform Windows-10-10.0.22000-SP0
2022-10-28 10:12:55 [scrapy.crawler] INFO: Overridden settings:
{'BOT_NAME': 'ScrapyDemmo',
 'NEWSPIDER_MODULE': 'ScrapyDemmo.spiders',
 'REQUEST_FINGERPRINTER_IMPLEMENTATION': '2.7',
 'ROBOTSTXT_OBEY': True,
 'SPIDER_MODULES': ['ScrapyDemmo.spiders'],
 'TWISTED_REACTOR': 'twisted.internet.asyncioreactor.AsyncioSelectorReactor'}
2022-10-28 10:12:55 [asyncio] DEBUG: Using selector: SelectSelector
2022-10-28 10:12:55 [scrapy.utils.log] DEBUG: Using reactor: twisted.internet.asyncioreactor.AsyncioSelectorReactor
2022-10-28 10:12:55 [scrapy.utils.log] DEBUG: Using asyncio event loop: asyncio.windows_events._WindowsSelectorEventLoop
2022-10-28 10:12:55 [scrapy.extensions.telnet] INFO: Telnet Password: 8f7196797757e0f5
2022-10-28 10:12:55 [scrapy.middleware] INFO: Enabled extensions:
['scrapy.extensions.corestats.CoreStats',
 'scrapy.extensions.telnet.TelnetConsole',
 'scrapy.extensions.logstats.LogStats']
2022-10-28 10:12:55 [scrapy.middleware] INFO: Enabled downloader middlewares:
['scrapy.downloadermiddlewares.robotstxt.RobotsTxtMiddleware',
 'scrapy.downloadermiddlewares.httpauth.HttpAuthMiddleware',
 'scrapy.downloadermiddlewares.downloadtimeout.DownloadTimeoutMiddleware',
 'scrapy.downloadermiddlewares.defaultheaders.DefaultHeadersMiddleware',
 'scrapy.downloadermiddlewares.useragent.UserAgentMiddleware',
 'scrapy.downloadermiddlewares.retry.RetryMiddleware',
 'scrapy.downloadermiddlewares.redirect.MetaRefreshMiddleware',
 'scrapy.downloadermiddlewares.httpcompression.HttpCompressionMiddleware',
 'scrapy.downloadermiddlewares.redirect.RedirectMiddleware',
 'scrapy.downloadermiddlewares.cookies.CookiesMiddleware',
 'scrapy.downloadermiddlewares.httpproxy.HttpProxyMiddleware',
 'scrapy.downloadermiddlewares.stats.DownloaderStats']
2022-10-28 10:12:55 [scrapy.middleware] INFO: Enabled spider middlewares:
['scrapy.spidermiddlewares.httperror.HttpErrorMiddleware',
 'scrapy.spidermiddlewares.offsite.OffsiteMiddleware',
 'scrapy.spidermiddlewares.referer.RefererMiddleware',
 'scrapy.spidermiddlewares.urllength.UrlLengthMiddleware',
 'scrapy.spidermiddlewares.depth.DepthMiddleware']
2022-10-28 10:12:55 [scrapy.middleware] INFO: Enabled item pipelines:
[]
2022-10-28 10:12:55 [scrapy.core.engine] INFO: Spider opened
2022-10-28 10:12:55 [scrapy.extensions.logstats] INFO: Crawled 0 pages (at 0 pages/min), scraped 0 items (at 0 items/min)
2022-10-28 10:12:55 [scrapy.extensions.telnet] INFO: Telnet console listening on 127.0.0.1:6023
2022-10-28 10:12:55 [filelock] DEBUG: Attempting to acquire lock 2507249710320 on D:\Python\venv\lib\site-packages\tldextract\.suffix_cache/publicsuffix.org-tlds\de84b5ca2167d4c83e38fb162f2e8738.tldextract.json.lock
2022-10-28 10:12:55 [filelock] DEBUG: Lock 2507249710320 acquired on D:\Python\venv\lib\site-packages\tldextract\.suffix_cache/publicsuffix.org-tlds\de84b5ca2167d4c83e38fb162f2e8738.tldextract.json.lock
2022-10-28 10:12:55 [filelock] DEBUG: Attempting to release lock 2507249710320 on D:\Python\venv\lib\site-packages\tldextract\.suffix_cache/publicsuffix.org-tlds\de84b5ca2167d4c83e38fb162f2e8738.tldextract.json.lock
2022-10-28 10:12:55 [filelock] DEBUG: Lock 2507249710320 released on D:\Python\venv\lib\site-packages\tldextract\.suffix_cache/publicsuffix.org-tlds\de84b5ca2167d4c83e38fb162f2e8738.tldextract.json.lock
2022-10-28 10:12:55 [scrapy.core.engine] DEBUG: Crawled (200) <GET http://www.baidu.com/robots.txt> (referer: None)
2022-10-28 10:12:55 [scrapy.downloadermiddlewares.robotstxt] DEBUG: Forbidden by robots.txt: <GET http://www.baidu.com/>
2022-10-28 10:12:55 [scrapy.core.engine] INFO: Closing spider (finished)
2022-10-28 10:12:55 [scrapy.statscollectors] INFO: Dumping Scrapy stats:

若嫌弃scrapy日志文件太杂乱,想无日志输出,只需在后面增加–nolog即可:

from scrapy import cmdline

cmdline.execute('scrapy crawl baidu --nolog'.split())

执行导出为json或scv格式,执行爬虫文件时添加-o选项即可

scrapy crawl 项目名 -o *.csv
scrapy crawl 项目名 -o *.json

对于json文件,在setting.js文件里添加,设置编码格式,否则会乱码:

from scrapy import cmdline
 
cmdline.execute('scrapy crawl baidu -o baidu.csv'.split())

四、Scrapy配置文件settings.py

默认配置文件,主要设置参数:

BOT_NAME = 'ScrapyDemmo' #Scrapy项目的名字,这将用来构造默认 User-Agent,同时也用来log,当您使用 startproject 命令创建项目时其也被自动赋值。

SPIDER_MODULES = ['ScrapyDemmo.spiders'] #Scrapy搜索spider的模块列表 默认: [xxx.spiders]
NEWSPIDER_MODULE = 'ScrapyDemmo.spiders' #使用 genspider 命令创建新spider的模块。默认: 'xxx.spiders'  


#爬取的默认User-Agent,除非被覆盖 
#USER_AGENT = 'ScrapyDemmo (+http://www.yourdomain.com)'

#如果启用,Scrapy将会采用 robots.txt策略 
ROBOTSTXT_OBEY = True

#Scrapy downloader 并发请求(concurrent requests)的最大值,默认: 16 
#CONCURRENT_REQUESTS = 32

#为同一网站的请求配置延迟(默认值:0) 
# See https://docs.scrapy.org/en/latest/topics/settings.html#download-delay
# See also autothrottle settings and docs
#DOWNLOAD_DELAY = 3 #下载器在下载同一个网站下一个页面前需要等待的时间,该选项可以用来限制爬取速度,减轻服务器压力。同时也支持小数:0.25 以秒为单位  

#下载延迟设置只有一个有效 
#CONCURRENT_REQUESTS_PER_DOMAIN = 16  #对单个网站进行并发请求的最大值。
#CONCURRENT_REQUESTS_PER_IP = 16	#对单个IP进行并发请求的最大值。如果非0,则忽略

#禁用Cookie(默认情况下启用) 
#COOKIES_ENABLED = False

#禁用Telnet控制台(默认启用) 
#TELNETCONSOLE_ENABLED = False

#覆盖默认请求标头:  
#DEFAULT_REQUEST_HEADERS = {
#   'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
#   'Accept-Language': 'en',
#}

#项目管道,300为优先级,越低越爬取的优先度越高
# See https://docs.scrapy.org/en/latest/topics/item-pipeline.html
#ITEM_PIPELINES = {
#    'ScrapyDemmo.pipelines.ScrapydemmoPipeline': 300,
#}

还可以设置日志的等级与日志存放的路径:
相关变量

LOG_LEVEL= ""
LOG_FILE="日志名.log"

日志等级分为,默认等级是1
1.DEBUG 调试信息
2.INFO 一般信息
3.WARNING 警告
4.ERROR 普通错误
5.CRITICAL 严重错误

如果设置
LOG_LEVEL=“WARNING”,就只会WARNING等级之下的ERROR和CRITICAL

一般主要需要配置的几个参数,其他按需配置即可。
USER_AGENT:默认是注释的,这个东西非常重要,如果不写很容易被判断为电脑爬虫。
ROBOTSTXT_OBEY:是否遵循机器人协议,默认是true,需要改为false,否则很多东西爬不了
DEFAULT_REQUEST_HEADERS:和USER_AGENT类似,只是参数更完整。

五、完整案例(下载图片)

用scrapy框架下载以前的示例:python爬虫之批量下载图片

以前

1、修改settings.py 主要参数

#关闭robot.txt协议
ROBOTSTXT_OBEY = False

#页面延迟下载,我这里测试,可以先不设置
DOWNLOAD_DELAY = 1

# 是否启用Cookie
COOKIES_ENABLED = True

#请求头 
DEFAULT_REQUEST_HEADERS = {
  'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
  'Accept-Language': 'en',
  'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/106.0.0.0 Safari/537.36'
}
#打开下载器
DOWNLOADER_MIDDLEWARES = {
    'ScrapyDemmo.middlewares.ScrapydemmoDownloaderMiddleware': 543,
}
#打开优先级,并添加自己编写的图片下载管道
ITEM_PIPELINES = {
   'ScrapyDemmo.pipelines.ScrapydemmoPipeline': 300,
   'ScrapyDemmo.pipelines.ImageDownloadPipeline': 300,
}
#添加下载储存目录
IMAGES_STORE = 'D:\Python\pic'

# 文件保存时间
#IMAGES_EXPIRES = 90

2、定义Item字段(Items.py)

本项目用于下载图片,因此可以仅构建图片名和图片地址字段。

import scrapy


class ScrapydemmoItem(scrapy.Item):
	#图片下载链接
    image_url = scrapy.Field()
    #图片名称
    image_name = scrapy.Field()

3、编写爬虫文件(spiders目录下)

这里文件名为:image_download.py

以前用requests库和BeautifulSoup库下载图片,这里就不需要了,scrapy自带相关函数和方法。

scrapy元素定位,提供三种方式,正则、Xpath表达式、css。
我这里有xpath定位方式。

import scrapy
import re
from ..items import ScrapydemmoItem

class ImageSpider(scrapy.Spider):
    name = 'image_download'
    allowed_domains = ['desk.3gbizhi.com']
    start_urls = ['https://desk.3gbizhi.com/deskMV/index.html']

    def parse(self, response):
    	#导入Items.py字段
        items = ScrapydemmoItem()
        #获取所有链接列表
        lists = response.xpath('//div[5]/ul/li')
        #点位元素循环获取图片链接和图片名称
        for i in lists:
        	#图片名称
            image_name = i.xpath('./a/img/@alt').get()
            #图片链接
            items['image_url'] = i.xpath('./a/img/@*[1]').get().replace('.278.154.jpg', '')
            #图片格式类型
            image_type = re.sub(r'h.*\d+.', '', items['image_url'])
            #拼接文件名,图片名称+图片格式
            items['image_name'] = '{}.{}'.format(image_name, image_type)
            yield  items
		#循环跳转下一页,并重复返回数据,这里测试先下载1页的图片,总共23页。
        for i in range(2,3):
            next_url = 'https://desk.3gbizhi.com/deskMV/index_{}.html'.format(i)
            yield scrapy.Request(next_url,callback=self.parse)

关于 yield 的理解,⾸先,如果你还没有对yield有个初步分认识,那么你先把yield看做“return”,这个是直观的,它⾸先是个return。

最主要的不同在于yield在返回值后还可以继续运行接下来的代码,使用的函数会返回一个生成器,而return在返回后就不在执行代码。

以上两个yield:

  • yield items:这里我们通过 yield 返回的不是 Request 对象,而是一个 ScrapydemmoItem 对象。
    scrap有框架获得这个对象之后,会将这个对象传递给 pipelines.py来做进一步处理。
    我们将在 pipelines.py里将传递过来的 scrapy.Item 对象保存到数据库里去。

  • yield scrapy.Request:这里是在爬取完一页的信息后,我们在当前页面获取到了下一页的链接,然后通过 yield 发起请求,并且将 parse 自己作为回调函数来处理下一页的响应。

4、修改管道文件pipelines.py用于下载图片

除了爬取文本,我们可能还需要下载文件、视频、图片、压缩包等,这也是一些常见的需求。scrapy提供了FilesPipeline和ImagesPipeline,专门用于下载普通文件及图片。

继承 Scrapy 内置的 ImagesPipeline,只需要重写get_media_requests 和item_completed函数即可。

from scrapy.pipelines.images import ImagesPipeline
from scrapy.exceptions import DropItem
from scrapy import Request

class ScrapydemmoPipeline:
    def process_item(self, item, spider):
        return item

class ImageDownloadPipeline(ImagesPipeline):
    def get_media_requests(self, item, info):
    	# 下载图片,如果传过来的是集合需要循环下载
    	# meta里面的数据是从spider获取,然后通过meta传递给下面方法:file_path
        yield Request(url = item['image_url'],meta = {'filename':item['image_name']})

    def item_completed(self, results, item, info):
     	# 分析下载结果并剔除下载失败的图片
        image_paths = [x['path'] for ok, x in results if ok]
        if not image_paths:
            raise DropItem("Item contains no images")
        return item

    def file_path(self, request, response=None, info=None):
    	# 接收上面meta传递过来的图片名称
        file_name = request.meta['filename']
        return file_name
  • get_media_requests()。它的第一个参数 item 是爬取生成的 Item 对象。我们将它的 url 字段取出来,然后直接生成 Request 对象。此 Request 加入调度队列,等待被调度,执行下载。
  • item_completed(),它是当单个 Item 完成下载时的处理方法。因为可能有个别图片未成功下载,所以需要分析下载结果并剔除下载失败的图片。该方法的第一个参数 results 就是该 Item 对应的下载结果,它是一个列表形式,列表每一个元素是一个元组,其中包含了下载成功或失败的信息。这里我们遍历下载结果找出所有成功的下载列表。如果列表为空,那么说明该 Item 对应的图片下载失败了,随即抛出异常DropItem,该 Item 忽略。否则返回该 Item,说明此 Item 有效。

以上两个函数即可下载图片了,图片名称为自动已哈希值命名,如:0db6e07054d966513f0a6f315b687f205c7ced90.jpg 这种命名方式不友好,所以我们需要重写 file_path函数,自定义图片名称。

  • file_path():它的第一个参数 request 就是当前下载对应的 Request 对象。这个方法用来返回保存的文件名,接收上面meta传递过来的图片名称,将图片以原来的名称和定义格式进行保存。

5、编写执行文件run.py运行

在项目下新建run.py作为执行文件

from scrapy import cmdline

#cmdline.execute('scrapy crawl image_download --nolog'.split())
cmdline.execute('scrapy crawl image_download'.split())

运行此文件,执行结果,在目录下载第一页壁纸完成。
在这里插入图片描述

六、小结

除了 ImagesPipeline 处理图片外,还有 FilesPipeline 可以处理文件,使用方法与图片类似,事实上 ImagesPipeline 是 FilesPipeline 的子类,因为图片也是文件的一种。

Scrapy很强大,对于大型网站非常实用,还可以同时运行多个爬虫程序,提升效率。Scrapy还有很多功能,可以自己研究。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2527.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Servlet篇 —— 我的第一个Servlet程序

☕导航小助手☕ &#x1f35a;写在前面 &#x1f35c;一、Maven的介绍 &#x1f371;​二、第一个Servlet的创建 &#x1f354;&#x1f354;2.1 创建项目 &#x1f969;&#x1f969;​2.2 引入依赖 &#x1f9aa;&#x1f9aa;​2.3 创建目录 &#x1f363;&#x1f363;2.4…

没想到GoFrame的gcache天然支持缓存淘汰策略

gcache提供统一的缓存管理模块&#xff0c;提供了开发者可自定义灵活接入的缓存适配接口&#xff0c;并默认提供了高速内存缓存适配实现。 先说结论 这篇文章通过结合商业项目的使用场景&#xff0c;为大家介绍了gcache的基本使用、缓存控制以及淘汰策略。 使用gcache做缓存处…

3分钟,快速上手Postman接口测试

Postman是一个用于调试HTTP请求的工具&#xff0c;它提供了友好的界面帮助分析、构造HTTP请求&#xff0c;并分析响应数据。实际工作中&#xff0c;开发和测试基本上都有使用Postman来进行接口调试工作。有一些其他流程的工具&#xff0c;也是模仿的Postman的风格进行接口测试工…

推荐 4 个开源工具

Hi&#xff0c;艾瑞巴蒂&#xff0c;晚上好&#xff01;今天推荐 4 个登上 GitHub 热搜的开源项目&#xff0c;它们分别是&#xff1a;1. 炫酷的 UI 工具&#xff1a;glslViewer2. Textual3. ToolJet&#xff1a;开源的低代码开发框架4. Linux 命令大全搜索工具01炫酷的 UI 工…

程序人生:去了字节跳动,才知道年薪40W的测试有这么多?

今年大环境不好&#xff0c;内卷的厉害&#xff0c;薪资待遇好的工作机会更是难得。最近脉脉职言区有一条讨论火了&#xff1a; 哪家互联网公司薪资最‘厉害’&#xff1f; 下面的评论多为字节跳动&#xff0c;还炸出了很多年薪40W的测试工程师 我只想问一句&#xff0c;现在的…

vue3项目的创建,vite+vue3+ts(3)- router

vue3 有三种写法&#xff1a; 1.compostion API &#xff1a; 还是按照vue2.0写法 2.组合式API: 3. 组合式API 语法糖&#xff08;setup), 语法简洁&#xff08;推荐使用这个&#xff09; 写法&#xff1a; 4. 在.eslintrc.cjs 或者 .eslintrc.js中配置代码&#xff0c;是这个…

聊聊计算机中的寄存器

文章目录前言数据寄存器(DR)地址寄存器(AR)程序状态寄存器(PSW)累加寄存器(AC)乘商寄存器(MQ)程序计数器(PC)指令寄存器(IR)MAR、MDR小结作者&#xff1a;小牛呼噜噜 | https://xiaoniuhululu.com 计算机内功、JAVA底层、面试相关资料等更多精彩文章在公众号「小牛呼噜噜 」 前…

国内第一篇讲解减少卡顿的代码级详细文章

原文链接&#xff1a;原文链接 系统网站应用出现过卡顿&#xff0c;但却不知道如何优化。国内第一篇讲如何减少卡顿的代码级别详细文章&#xff0c;也是性能优化系列文章中的一篇&#xff0c;欢迎点赞、关注&#xff0c;也欢迎对其中的内容进行评论。 经常听人说&#xff0c;“…

配置CentOS为ssh免密码互相通信

文章目录配置CentOS为ssh免密码互相通信配置4台CentOS的集群配置4台CentOS为ssh免密码互相通信配置CentOS为ssh免密码互相通信 配置4台CentOS的集群 修改 /etc/sysconfig/network-scripts/ifcfg-ens33 文件&#xff0c;配置虚拟机 IP&#xff0c;以其中一个虚拟机为例&#x…

html实现贪吃蛇游戏(源码)

文章目录1.实现贪吃蛇1.1 界面设计1.2 界面动态效果1.3 界面主代码2.资源目录源码下载作者&#xff1a;xcLeigh 文章说明 html实现贪吃蛇源码&#xff0c;酷炫的界面效果&#xff0c;点击开始游戏后&#xff0c;通过键盘的上下左右按键&#xff0c;操作移动方向&#xff0c;代码…

@DateTimeFormat和@JsonFormat介绍

文章目录1.DateTimeFormat注解1.1DateTimeFormat注解简介1.2DateTimeFormat注解的功能1.3DateTimeFormat注解的注意点1.4DateTimeFormat功能演示1.4.1类型转换异常情况测试1.4.2接收url路径传参格式测试1.4.3接收Form-Data数据格式测试1.4.4接收JSON数据格式测试2.JsonFormat注…

python实现基于RPC协议的接口自动化测试

什么是RPC RPC&#xff08;Remote Procedure Call&#xff09;远程过程调用协议是一个用于建立适当框架的协议。从本质上讲&#xff0c;它使一台机器上的程序能够调用另一台机器上的子程序&#xff0c;而不会意识到它是远程的。 RPC 是一种软件通信协议&#xff0c;一个程序可…

Day1:垂直水平居中方式(至少6种,必须包含弹性盒子)

目录 垂直水平居中方式 方式1&#xff1a;弹f性盒子(1) &#xff08;推荐&#xff09; 方式2&#xff1a;弹性盒子(2) &#xff08;推荐&#xff09; 方式3&#xff1a;弹性盒子(3) 方式4&#xff1a;grid布局&#xff08;1&#xff09; &#xff08;推荐&#xff09; 方…

vs2019 编译调试 QT Creator 源码

vs2019 编译调试 QT Creator 源码 开始使用Qt Creator 5.15.2 调试编译 Qt Creator 6.0.2源码&#xff0c;对源码进行了 裁剪&#xff0c;将一些暂时用不到的文件删除&#xff0c;比如plugins里面的绝大部分文件。然后使用vs2019打开工程&#xff0c;进行编译调试。下面对这个…

IDEA2022插件:EasyCode一键生成增删改查代码

IDEA2022插件&#xff1a;EasyCode一键生成增删改查代码 文章目录IDEA2022插件&#xff1a;EasyCode一键生成增删改查代码建表下载插件IDEA连接数据源引入必要依赖配置SpringBoot数据库连接使用EasyCode生成代码生成效果启动测试小错误接口测试自行配置更好用尾述结语建表 新建…

【案例源码公开】国产AD+全志T3开发案例,为能源电力行业排忧解难!8/16通道

前 言 本文主要介绍基于全志科技T3(ARM Cortex-A7)国产处理器的8/16通道AD采集开发案例,使用核芯互联CL1606/CL1616国产AD芯片,亦适用于ADI AD7606/AD7616。CL1606/CL1616与AD7606/AD7616软硬件兼容。 备注: (1)创龙科技TL7606I模块使用AD芯片为核芯互联CL1606或ADI AD…

【C语言】初始C语言系列 代码详解 _ 编程入门 _【内附代码和图片】_ [初阶篇 _ 总结复习]

【前言】 本篇文章为初始C语言部分&#xff0c;C语言是编程的入门语言&#xff0c;所以也说是编程入门&#xff1b; 学好C语言的入门内容&#xff0c;才能真正的入门编程&#xff0c;而C语言的学习对于刚入门的同学还是有一些难度的&#xff0c;需要踏踏实实的自己去理解。 在此…

REDIS篇(4)——命令执行过程(readQueryFromClient)

前面讲过&#xff0c;ae循环在收到客户端请求时&#xff0c;会调用请求处理器——acceptTcpHandler &#xff0c;而请求处理器会创建新的套接字并监听和绑定命令处理器——readQueryFromClient。本篇着重分析命令的执行过程。 大概可分为&#xff1a; 1、读取并分析套接口中协…

QT学习_06_UI设计

1 创建项目 前5篇的学习笔记都没有用到ui&#xff0c;从现在开始&#xff0c;就要用这个ui了 创建项目的时候&#xff0c;把这个Generate form√上 项目文件中&#xff0c;就多了mainwindow.ui 2 ui设计界面的介绍 双击这个.ui文件&#xff0c;就可以进入设计界面 下面简单的…

字节跳动内推软件测试【自动化测试】岗,最低年薪50W+

目录 字节跳动内推 测试开发工程师技能成长路径 字节跳动内推 今年大环境不好&#xff0c;内卷的厉害&#xff0c;薪资待遇好的工作机会更是难得。最近脉脉职言区有一条讨论火了&#xff1a; 哪家互联网公司薪资最‘厉害’&#xff1f; 下面的评论多为字节跳动&#xff0c;还炸…