【大模型有哪些训练阶段?】

news2025/4/25 15:44:19

大模型(如 GPT、BERT 等)训练一般可以分为以下 三个主要阶段,每个阶段都承担着不同的职责,共同推动模型从“语言新手”成长为“多任务专家”。


🧠 一、预训练阶段(Pre-training)

📌 核心目标:

让模型学习通用语言知识世界常识

✅ 特点:
  • 数据量巨大(TB级以上),通常来自网络、书籍、百科等;
  • 无监督或自监督学习
    • BERT 使用 掩码语言模型(MLM)
    • GPT 使用 自回归语言模型(Auto-regressive)
🏗️ 技术细节:
  • Transformer 架构为主;
  • 大批量并行训练;
  • 大模型参数通常达到数十亿甚至万亿级别。
🎯 目标是:

学习语法、常识、句式结构、上下文语义等 通用能力


🧪 二、微调阶段(Fine-tuning)

📌 核心目标:

让模型适应特定任务或领域,比如情感分析、问答、摘要、代码生成等。

✅ 特点:
  • 有监督学习(带标签数据);
  • 使用比预训练小得多的语料;
  • 不同任务、领域会分别训练(可以多任务同时也可以单任务)。
🎯 效果:

提升模型在特定领域/任务中的精度和表现力,例如:

  • 金融领域微调后擅长分析报告;
  • 医疗微调后能更好理解临床对话。

👥 三、对齐与指令微调(Alignment / Instruction Tuning)

📌 核心目标:

让模型行为更加“人类对齐”,安全、守规、有用。

✅ 典型方法:
  • 指令微调(Instruction Tuning):训练模型遵循“用户指令”,例如“写一个摘要”;
  • 人类反馈强化学习(RLHF)
    • 收集用户偏好数据(哪个回答更好)
    • 用奖励模型训练一个“人喜欢的行为”策略
  • 还有例如 DPO(Direct Preference Optimization)、RLAIF 等新技术替代 RLHF。
🎯 结果:
  • 让模型更加 “对人友好”;
  • 能对话、解释、拒绝危险请求。

🧩 附加阶段(可选)

阶段描述
Continual Learning(持续学习)保持模型随时间更新而不过时
Retrieval-Augmented Training(检索增强训练)融合外部知识库,提升时效性和精度
蒸馏(Distillation)将大模型能力压缩为小模型

📊 小结

阶段核心任务学习方式数据类型
预训练学习语言本体自监督大规模无标签
微调学习任务技能有监督中小规模标注数据
对齐适应人类期望人类反馈+微调偏好/指令/打分数据

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2342530.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

动手试一试 Spring Boot默认缓存管理

1.准备数据 使用之前创建的springbootdata的数据库,该数据库有两个表t_article和t_comment,这两个表预先插入几条测试数据。 2.编写数据库表对应的实体类 Entity(name "t_comment") public class Comment {IdGeneratedValue(strategy Gener…

Opencv图像处理:旋转、打包、多图像匹配

文章目录 一、图像的旋转1、使用numpy方法实现旋转1)顺时针旋转90度2)逆时针旋转90度 2、使用opencv的方法实现图像旋转1)顺时针旋转90度2)逆时针旋转90度3)旋转180度 3、效果 二、多图像匹配1、模板2、匹配对象3、代码…

BOM与DOM(解疑document window关系)

BOM(浏览器对象模型) 定义与作用 BOM(Browser Object Model)提供与浏览器窗口交互的接口,用于控制导航、窗口尺寸、历史记录等浏览器行为 window:浏览器窗口的顶层对象,包含全局属性和方法&am…

数据仓库建设全解析!

目录 一、数据仓库建设的重要性 1. 整合企业数据资源 2. 支持企业决策制定 3. 提升企业竞争力 二、数据仓库建设的前期准备 1. 明确业务需求 2. 评估数据源 3. 制定项目计划 三、数据仓库建设的具体流程 1.需求分析​ 2.架构设计​ 3.数据建模​ 4.ETL 开发​ 5.…

时序约束 记录

一、基础知识 1、fpga的约束文件为.fdc,synopsys的约束文件为.sdc。想通过fpga验证soc设计是否正确,可以通过syn工具(synplify)吃.fdc把soc code 转换成netlist。然后vivado P&R工具通过吃上述netlist、XDC 出pin脚约束、fdc时序约束三个约束来完成…

基于SpringBoot的在线抽奖系统测试用例报告

一、项目背景 在线抽奖系统采用前后端分离的方法来实现,同时使用了数据库来存储相关的数据,redis来缓存验证码,RabbitMQ来缓存信息队列,同时将其部署到云服务器上。前端主要有登录页、后台管理页、活动列表页,抽奖页等…

26考研|数学分析:数项级数

数项级数这一章的开始,开启了新的关于“级数”这一新的概念体系的学习进程,此部分共包含四章的内容,分别为数项级数、函数项级数、幂级数以及傅里叶级数。这一章中,首先要掌握级数的相关概念与定义,重难点在于掌握判断…

likeadmin前端请求地址配置踩坑

likeadmin前端本地调试执行步骤 第一步:npm i 安装项目所有依赖 第二步:npm run dev 启动 报错,发送的请求没通,很显然请求的地址不存在 第三步:查找接口请求地址 配置 根目录下有个.env.production.example 文件…

计算机视觉——速度与精度的完美结合的实时目标检测算法RF-DETR详解

概述 目标检测已经取得了长足的发展,尤其是随着基于 Transformer 的模型的兴起。RF-DETR,由 Roboflow 开发,就是这样一种模型,它兼顾了速度和精度。使用 Roboflow 的工具可以让整个过程变得更加轻松。他们的平台涵盖了从上传和标…

系统思考:技术与产品协同

在《第五项修炼》中,彼得圣吉指出:组织中最根本的问题,往往不是个别人的能力,而是思维的局限和系统之间的断裂。我最近要给一家互联网公司交付系统思考的项目,客户希望技术和产品的管理者一起参加,也问我&a…

面试之消息队列

消息队列场景 什么是消息队列? 消息队列是一个使用队列来通信的组件,它的本质就是个转发器,包含发消息、存消息、消费消息。 消息队列怎么选型? 特性ActiveMQRabbitMQRocketMQKafka单机吞吐量万级万级10万级10万级时效性毫秒级…

通过阿里云Milvus与通义千问VL大模型,快速实现多模态搜索

本文主要演示了如何使用阿里云向量检索服务Milvus版与通义千问VL大模型,提取图片特征,并使用多模态Embedding模型,快速实现多模态搜索。 基于灵积(Dashscope)模型服务上的通义千问 API以及Embedding API来接入图片、文…

使用 Spring Boot Admin 通过图形界面查看应用配置信息的完整配置详解,包含代码示例和注释,最后以表格总结关键配置

以下是使用 Spring Boot Admin 通过图形界面查看应用配置信息的完整配置详解,包含代码示例和注释,最后以表格总结关键配置: 1. 环境准备 Spring Boot 版本:2.7.x(兼容 Spring Boot Admin 2.x)Spring Boot…

【计算机视觉】CV实战项目 - 基于YOLOv5与DeepSORT的智能交通监控系统:原理、实战与优化

基于YOLOv5与DeepSORT的智能交通监控系统:原理、实战与优化 一、项目架构与技术解析1.1 核心算法架构1.2 学术基础 二、实战环境配置2.1 硬件要求与系统配置2.2 分步安装指南 三、核心功能实战3.1 基础车辆计数3.2 自定义检测类别3.3 多区域计数配置 四、性能优化技…

17.磁珠在EMC设计中的运用

磁珠在EMC设计中的运用 1. 磁珠的高频等效特性2. 磁珠的参数分析与选型3. 磁珠应用中的隐患问题 1. 磁珠的高频等效特性 和磁环类似,低频段感性jwL为主,高频段阻性R为主。 2. 磁珠的参数分析与选型 不需要太在意磁珠在100MHz时的电阻值,选型…

Mediamtx与FFmpeg远程与本地推拉流使用

1.本地推拉流 启服 推流 ffmpeg -re -stream_loop -1 -i ./DJI_0463.MP4 -s 1280x720 -an -c:v h264 -b:v 2000k -maxrate 2500k -minrate 1500k -bufsize 3000k -rtsp_transport tcp -f rtsp rtsp://127.0.0.1:8554/stream 拉流 ffplay -rtsp_transport tcp rtsp://43.136.…

DPIN在AI+DePIN孟买峰会阐述全球GPU生态系统的战略愿景

DPIN基金会在3月29日于印度孟买举行的AIDePIN峰会上展示了其愿景和未来5年的具体发展计划,旨在塑造去中心化算力的未来。本次活动汇集了DPIN、QPIN、社区成员和Web3行业资深顾问,深入探讨DPIN构建全球领先的去中心化GPU算力网络的战略,该网络…

Visual Studio Code 使用tab键往左和往右缩进内容

使用VSCode写东西,经常遇到多行内容同时缩进的情况,今天写文档的时候就碰到,记录下来: 往右缩进 选中多行内容,点tab键,会整体往右缩进: 往左缩进 选中多行内容,按shifttab&am…

HTML、XHTML 和 XML区别

HTML、XHTML 和 XML 这三兄弟的区别 HTML: 老大哥,负责网页长啥样,性格比较随和,有点小错误也能容忍。XHTML: 二哥,看着像 HTML,但规矩严,是按 XML 的规矩来的 HTML,更规范。XML: 小弟,负责存储和传输数据,非常灵活,标签可以自己随便定,但规矩最严。它们仨长啥样?(…

FPGA上实现YOLOv5的一般过程

在FPGA上实现YOLOv5 YOLO算法现在被工业界广泛的应用,虽说现在有很多的NPU供我们使用,但是我们为了自己去实现一个NPU所以在本文中去实现了一个可以在FPGA上运行的YOLOv5。 YOLOv5的开源代码链接为 https://github.com/ultralytics/yolov5 为了在FPGA中…