AMGCL库的Backends及使用示例

news2025/4/15 10:40:49

AMGCL库的Backends及使用示例

AMGCL是一个用于解决大型稀疏线性方程组的C++库,它提供了多种后端(backends)实现,允许用户根据不同的硬件和性能需求选择合适的计算后端。

AMGCL支持的主要Backends

  1. 内置Backends:

    • builtin - 默认的纯C++实现
    • block - 支持块状矩阵
  2. 并行计算Backends:

    • openmp - 基于OpenMP的并行实现
    • cuda - NVIDIA CUDA后端
    • vexcl - 基于VexCL的异构计算后端(支持OpenCL和CUDA)
  3. 外部库集成Backends:

    • eigen - Eigen库后端
    • ublas - Boost.uBLAS后端

使用示例

1. 使用内置后端(builtin)

#include <amgcl/backend/builtin.hpp>
#include <amgcl/make_solver.hpp>
#include <amgcl/amg.hpp>
#include <amgcl/coarsening/smoothed_aggregation.hpp>
#include <amgcl/relaxation/spai0.hpp>
#include <amgcl/solver/bicgstab.hpp>

int main() {
    // 矩阵大小
    const int n = 100;
    
    // 使用内置后端创建矩阵
    typedef amgcl::backend::builtin<double> Backend;
    
    // 设置矩阵(这里用对角线矩阵作为示例)
    std::vector<int> ptr = {0, 1, 2, 3, ..., n};
    std::vector<int> col = {0, 1, 2, 3, ..., n-1};
    std::vector<double> val(n, 2.0); // 对角线值为2
    
    // 创建AMG层次结构
    typedef amgcl::make_solver<
        amgcl::amg<
            Backend,
            amgcl::coarsening::smoothed_aggregation,
            amgcl::relaxation::spai0
        >,
        amgcl::solver::bicgstab<Backend>
    > Solver;
    
    // 设置求解器参数
    Solver::params prm;
    prm.solver.max_iter = 100;
    
    // 初始化求解器
    Solver solve(std::tie(n, ptr, col, val), prm);
    
    // 创建右侧向量和初始解
    std::vector<double> rhs(n, 1.0), x(n, 0.0);
    
    // 求解
    int iters;
    double error;
    std::tie(iters, error) = solve(rhs, x);
    
    std::cout << "Iterations: " << iters << std::endl;
    std::cout << "Error: " << error << std::endl;
    
    return 0;
}

2. 使用OpenMP后端

#include <amgcl/backend/builtin.hpp>
#include <amgcl/value_type/static_matrix.hpp>
#include <amgcl/adapter/block_matrix.hpp>
#include <amgcl/make_solver.hpp>
#include <amgcl/amg.hpp>
#include <amgcl/coarsening/smoothed_aggregation.hpp>
#include <amgcl/relaxation/ilu0.hpp>
#include <amgcl/solver/cg.hpp>
#include <amgcl/profiler.hpp>

int main() {
    // 启用OpenMP后端
    typedef amgcl::backend::builtin<double> Backend;
    
    // 设置OpenMP线程数
    omp_set_num_threads(4);
    
    // 创建矩阵(这里用随机矩阵作为示例)
    const int n = 1000;
    std::vector<int> ptr(n+1), col;
    std::vector<double> val;
    
    // 填充矩阵(5对角矩阵)
    for(int i = 0; i < n; ++i) {
        ptr[i] = col.size();
        for(int j = std::max(0, i-2); j < std::min(n, i+3); ++j) {
            col.push_back(j);
            val.push_back(i == j ? 10.0 : -1.0);
        }
    }
    ptr[n] = col.size();
    
    // 创建AMG求解器
    typedef amgcl::make_solver<
        amgcl::amg<
            Backend,
            amgcl::coarsening::smoothed_aggregation,
            amgcl::relaxation::ilu0
        >,
        amgcl::solver::cg<Backend>
    > Solver;
    
    // 设置参数
    Solver::params prm;
    prm.solver.tol = 1e-6;
    
    // 初始化求解器
    Solver solve(std::tie(n, ptr, col, val), prm);
    
    // 创建右侧向量和初始解
    std::vector<double> rhs(n, 1.0), x(n, 0.0);
    
    // 求解
    int iters;
    double error;
    std::tie(iters, error) = solve(rhs, x);
    
    std::cout << "Iterations: " << iters << std::endl;
    std::cout << "Error: " << error << std::endl;
    
    return 0;
}

3. 使用CUDA后端

#include <amgcl/backend/cuda.hpp>
#include <amgcl/make_solver.hpp>
#include <amgcl/amg.hpp>
#include <amgcl/coarsening/smoothed_aggregation.hpp>
#include <amgcl/relaxation/ilu0.hpp>
#include <amgcl/solver/bicgstab.hpp>
#include <thrust/device_vector.h>

int main() {
    // 使用CUDA后端
    typedef amgcl::backend::cuda<double> Backend;
    
    // 矩阵大小
    const int n = 1000;
    
    // 在主机上创建矩阵(CSR格式)
    std::vector<int> ptr_host(n+1), col_host;
    std::vector<double> val_host;
    
    // 填充矩阵(5对角矩阵)
    for(int i = 0; i < n; ++i) {
        ptr_host[i] = col_host.size();
        for(int j = std::max(0, i-2); j < std::min(n, i+3); ++j) {
            col_host.push_back(j);
            val_host.push_back(i == j ? 10.0 : -1.0);
        }
    }
    ptr_host[n] = col_host.size();
    
    // 将矩阵拷贝到设备
    thrust::device_vector<int> ptr = ptr_host;
    thrust::device_vector<int> col = col_host;
    thrust::device_vector<double> val = val_host;
    
    // 创建AMG求解器
    typedef amgcl::make_solver<
        amgcl::amg<
            Backend,
            amgcl::coarsening::smoothed_aggregation,
            amgcl::relaxation::ilu0
        >,
        amgcl::solver::bicgstab<Backend>
    > Solver;
    
    // 设置参数
    Solver::params prm;
    prm.solver.tol = 1e-6;
    
    // 初始化求解器
    Solver solve(
        amgcl::adapter::csr(
            thrust::raw_pointer_cast(ptr.data()),
            thrust::raw_pointer_cast(col.data()),
            thrust::raw_pointer_cast(val.data()),
            n, n
        ),
        prm
    );
    
    // 创建右侧向量和初始解(在设备上)
    thrust::device_vector<double> rhs(n, 1.0), x(n, 0.0);
    
    // 求解
    int iters;
    double error;
    std::tie(iters, error) = solve(
        thrust::raw_pointer_cast(rhs.data()),
        thrust::raw_pointer_cast(x.data())
    );
    
    std::cout << "Iterations: " << iters << std::endl;
    std::cout << "Error: " << error << std::endl;
    
    return 0;
}

选择Backend的考虑因素

  1. 问题规模:

    • 小规模问题: 内置后端或Eigen后端
    • 大规模问题: OpenMP或CUDA后端
  2. 硬件环境:

    • 多核CPU: OpenMP后端
    • NVIDIA GPU: CUDA后端
    • 异构系统: VexCL后端
  3. 矩阵特性:

    • 标量问题: 基本后端
    • 块状矩阵: 块状后端

AMGCL的设计允许你通过简单地更改模板参数来切换后端,而无需重写大部分代码,这为性能调优提供了极大的灵活性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2334090.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C语言超详细指针知识(二)

在上一篇有关指针的博客中&#xff0c;我们介绍了指针的基础知识&#xff0c;如&#xff1a;内存与地址&#xff0c;解引用操作符&#xff0c;野指针等&#xff0c;今天我们将更加深入的学习指针的其他知识。 1.指针的使用和传址调用 1.1strlen的模拟实现 库函数strlen的功能是…

华为机试—最大最小路

题目 对于给定的无向无根树&#xff0c;第 i 个节点上有一个权值 wi​ 。我们定义一条简单路径是好的&#xff0c;当且仅当&#xff1a;路径上的点的点权最小值小于等于 a &#xff0c;路径上的点的点权最大值大于等于 b 。 保证给定的 a<b&#xff0c;你需要计算有多少条简…

[Linux]从零开始的ARM Linux交叉编译与.so文件链接教程

一、前言 最近在项目需要将C版本的opencv集成到原本的代码中从而进行一些简单的图像处理。但是在这其中遇到了一些问题&#xff0c;首先就是原本的opencv我们需要在x86的架构上进行编译然后将其集成到我们的项目中&#xff0c;这里我们到底应该将opencv编译为x86架构的还是编译…

Rag实现流程

Rag实现流程 目录 Rag实现流程1. 加载问答链代码解释`chain_type="stuff"` 的含义其他 `chain_type` 参数选项及特点1. `map_reduce`2. `refine`3. `map_rerank`示例代码展示不同 `chain_type` 的使用其他参数类型2. 提出问题3. 检索相关文档代码解释其他参数类型4. …

【c语言】指针习题

练习一&#xff1a;使用指针打印数组内容 #include <stdio.h> void print(int* p, int sz) {int i 0;for (i 0; i < sz; i) {printf("%d ", *p);//printf("%d ", *(p i));} } int main() {int arr[] { 1,2,3,4,5,6,7,8,9,10 };int sz sizeof…

银行业务知识序言

银行业务知识体系全景解析 第一章 金融创新浪潮下的银行业务知识革命 1.1 数字化转型驱动金融业态重构 在区块链、人工智能、物联网等技术的叠加作用下&#xff0c;全球银行业正经历着"服务无形化、流程智能化、风控穿透化"的深刻变革。根据麦肯锡《2023全球银行业…

智慧水务项目(八)基于Django 5.1 版本PyScada详细安装实战

一、说明 PyScada&#xff0c;一个基于Python和Django框架的开源SCADA&#xff08;数据采集与监视控制系统&#xff09;系统&#xff0c;采用HTML5技术打造人机界面&#xff08;HMI&#xff09;。它兼容多种工业协议&#xff0c;如Modbus TCP/IP、RTU、ASCII等&#xff0c;并具…

畅游Diffusion数字人(23):字节最新表情+动作模仿视频生成DreamActor-M1

畅游Diffusion数字人(0):专栏文章导航 前言:之前有很多动作模仿或者表情模仿的工作,但是如果要在实际使用中进行电影级的复刻工作,仅仅表情或动作模仿还不够,需要表情和动作一起模仿。最近字节跳动提出了一个表情+动作模仿视频生成DreamActor-M1。 目录 贡献概述 核心动…

【Unity网络编程知识】C#的 Http相关类学习

1、搭建HTTP服务器 使用别人做好的HTTP服务器软件&#xff0c;一般作为资源服务器时使用该方式&#xff08;学习阶段建议使用&#xff09;自己编写HTTP服务器应用程序&#xff0c;一般作为Web服务器或者短连接游戏服务器时使用该方式&#xff08;工作后由后端程序员来做&#…

SpringBoot企业级开发之【用户模块-更新用户头像】

功能如下所示&#xff1a; 我们先看一下接口文档&#xff1a; 为什么头像是一串字符串呢&#xff1f;因为我们是将头像图片放到第三方去存储&#xff0c;比如&#xff1a;阿里云等 开发思路&#xff1a; 实操&#xff1a; 1.controller 注意!这里使用【PatchMapping】注解…

DAPP实战篇:使用ethersjs连接智能合约并输入地址查询该地址余额

本系列目录 专栏:区块链入门到放弃查看目录-CSDN博客文章浏览阅读400次。为了方便查看将本专栏的所有内容列出目录,按照顺序查看即可。后续也会在此规划一下后续内容,因此如果遇到不能点击的,代表还没有更新。声明:文中所出观点大多数源于笔者多年开发经验所总结,如果你…

网络流量管理-流(Flow)

1. 传统网络的问题&#xff1a;快递员送信模式 想象你每天要寄100封信给同一个朋友&#xff0c;传统网络的处理方式就像一个固执的快递员&#xff1a; 每封信都单独处理&#xff1a;检查地址、规划路线、盖章、装车…即使所有信的目的地、收件人都相同&#xff0c;也要重复100…

每日文献(十一)——Part two

今天从第四章&#xff1a;快速RCNN&#xff0c;方法细节开始介绍。 目录 四、快速RCNN&#xff1a;方法细节 4.1 快速R-CNN回顾 4.2 对抗网络设计 4.2.1 遮挡的对抗空间信息损失 4.2.2 对抗空间Transformer网络 4.2.3 对抗融合 五、实验 5.1 实验设置 5.2 PASCAL VOC…

Laravel 实现 队列 发送邮件功能

一. 什么是队列 在构建 Web 应用程序时&#xff0c;你可能需要执行一些任务&#xff0c;例如解析文件&#xff0c;发送邮件&#xff0c;大量的数据计算等等&#xff0c;这些任务在典型的 Web 请求期间需要很长时间才能执行。 庆幸的是&#xff0c;Laravel 可以创建在后台运行…

一、绪论(Introduction of Artificial Intelligence)

写在前面&#xff1a; 老师比较看重的点&#xff1a;对问题的概念本质的理解&#xff0c;不会考试一堆运算的东西&#xff0c;只需要将概念理解清楚就可以&#xff0c;最后一个题会出一个综合题&#xff0c;看潜力&#xff0c;前面的部分考的不是很深&#xff0c;不是很难&…

Web攻防—SSRF服务端请求伪造Gopher伪协议无回显利用

前言 重学Top10的第二篇&#xff0c;希望各位大佬不要见笑。 SSRF原理 SSRF又叫服务端请求伪造&#xff0c;是一种由服务端发起的恶意请求&#xff0c;SSRF发生在应用程序允许攻击者诱使服务器向任意域或资源发送未经授权的请求时。服务器充当代理&#xff0c;执行攻击者构造…

【时时三省】(C语言基础)选择结构程序综合举例

山不在高&#xff0c;有仙则名。水不在深&#xff0c;有龙则灵。 ----CSDN 时时三省 下面综合介绍几个包含选择结构的应用程序。 例题1&#xff1a; 写一程序&#xff0c;判断某一年是否为闰年。 程序1&#xff1a; 先画出判别闰年算法的流程图&#xff0c;见下图用变量le…

File 类 (文件|文件夹操作)

一、File 类 1.1 前言 在 JDK 中 通过 java.io.File 类&#xff0c;可以实现操作系统重文件|文件夹的创建、删除、查看、重命名等操作。 1.2 File 类构造方法 File 一共提供了四个构造方法&#xff0c;都是有参构造。其中最常使用的是 File(String) 和 File(String, String)…

Hadoop文件操作指南:深入解析文件操作

1 Hadoop文件系统概述 Hadoop分布式文件系统(HDFS)是Hadoop生态的核心存储组件&#xff0c;专为大规模数据集设计&#xff0c;具有高容错性和高吞吐量特性。 HDFS核心特性: 分布式存储&#xff1a;文件被分割成块(默认128MB)分布存储多副本机制&#xff1a;每个块默认3副本&…

STM32 HAL库之EXTI示例代码

外部中断按键控制LED灯 在main.c中 HAL_Init(); 初始化Flash&#xff0c;中断优先级以及HAL_MspInit函数&#xff0c;也就是 stm32f1xx_hal.c 中 HAL_StatusTypeDef HAL_Init(void) {/* Configure Flash prefetch */ #if (PREFETCH_ENABLE ! 0) #if defined(STM32F101x6) || …