第12章 迭进
12.1 通过迭进设计达到整洁目的
假使有4条简单的规则,跟着做就能帮助你创建优良的设计,会如何?假使遵循这些规则,你就能洞见代码的结构和设计,更能轻易地应用SRP和DIP之类的原则,便会如何?假使这4条规则有利于良好的设计“浮现”出来,又会如何?
我们中的许多人认为,Kent Beck关于简单设计的4条规则,对于创建具有良好设计的软件有着莫大的帮助。
据Kent所述,只要遵循以下规则,设计就能变得“简单”:
-
运行所有测试;
-
不可重复;
-
表达了程序员的意图;
-
尽可能减少类和方法的数量。
以上规则按其重要程度排列。
12.2 简单设计规则1:运行所有测试
设计必须制造出如预期一般工作的系统,这是首要因素。系统也许有一套绝佳设计,但如果缺乏验证系统是否真按预期那样工作的简单方法,那就无异于纸上谈兵。
全面测试并持续通过所有测试的系统,就是可测试的系统。这看似浅显,却很重要。不可测试的系统同样不可验证。不可验证的系统,绝不应部署。
幸运的是,只要系统可测试,就会导向保持类短小且目的单一的设计方案。遵循SRP的类,测试起来较为简单。测试编写得越多,就越能持续走向编写较易测试的代码。所以,确保系统完全可测试能帮助我们创建更好的设计。
紧耦合的代码难以编写测试。同样,编写测试越多,就越会遵循DIP之类的规则,从而越会使用依赖注入、接口和抽象等工具尽可能减少耦合,如此一来,设计就会有长足进步。
遵循有关编写测试并持续运行测试的简单、明确的规则,系统就会更贴近面向对象低耦合度、高内聚度的目标。编写测试将会引致更好的设计。
12.3 简单设计规则2~4:重构
有了测试,就能保持代码和类的整洁,方法就是递增式地重构代码。添加了几行代码后,就要暂停,琢磨一下变化了的设计。设计退步了吗?如果是,就要清理它,并且运行测试,保证没有破坏任何东西。测试消除了对清理代码就会破坏代码的恐惧。
在重构过程中,可以应用有关优秀软件设计的一切知识,提升内聚性,降低耦合度,切分关注面,模块化系统性关注面,缩小函数和类的尺寸,选用更好的名称,如此等等。这也是应用简单设计后3条规则的地方:消除重复,保证表达力,尽可能减少类和方法的数量。
12.4 不可重复
重复是拥有良好设计的系统的大敌。它代表着额外的工作、额外的风险和额外且不必要的复杂度。重复有多种表现。极其雷同的代码行当然是重复。类似的代码往往可以调整得更相似,这样就能更容易地进行重构。重复也有实现上的重复等其他一些形态,例如,在某个群集类中可能会有以下两个方法:
int size() {}
boolean isEmpty() {}
这两个方法可以分别实现。isEmpty
方法跟踪一个布尔值,而size
方法则跟踪一个计数器。或者,也可以通过在isEmpty
方法中使用size
方法来消除重复:
boolean isEmpty() {
return 0 == size();
}
要想创建整洁的系统,需要有消除重复的意愿,即便对于短短几行也是如此。例如,以下代码:
public void scaleToOneDimension(
float desiredDimension, float imageDimension) {
if (Math.abs(desiredDimension - imageDimension) < errorThreshold)
return;
float scalingFactor = desiredDimension / imageDimension;
scalingFactor = (float)(Math.floor(scalingFactor * 100) * 0.01f);
RenderedOp newImage = ImageUtilities.getScaledImage(
image, scalingFactor, scalingFactor);
image.dispose();
System.gc();
image = newImage;
}
public synchronized void rotate(int degrees) {
RenderedOp newImage = ImageUtilities.getRotatedImage(
image, degrees);
image.dispose();
System.gc();
image = newImage;
}
要保持系统整洁,应该消除scaleToOneDimension
方法和rotate
方法里面的少量重复:
public void scaleToOneDimension(
float desiredDimension, float imageDimension) {
if (Math.abs(desiredDimension - imageDimension) < errorThreshold)
return;
float scalingFactor = desiredDimension / imageDimension;
scalingFactor = (float)(Math.floor(scalingFactor * 100) * 0.01f);
replaceImage(ImageUtilities.getScaledImage(
image, scalingFactor, scalingFactor));
}
public synchronized void rotate(int degrees) {
replaceImage(ImageUtilities.getRotatedImage(image, degrees));
}
private void replaceImage(RenderedOp newImage) {
image.dispose();
System.gc();
image = newImage;
}
做了一点点共性抽取后,我们意识到已经违反了SRP原则。所以,可以把一个新方法分解到另外的类中,从而提升其可见性。团队中的其他成员也许会发现进一步抽象新方法的机会,并且在其他场景中复用之。“小规模复用”可大量降低系统复杂性。要想实现大规模复用,必须理解如何实现小规模复用。
模板方法模式(Template Method)是一种移除高层级重复的通用技巧。例如:
public class VacationPolicy {
public void accrueUSDivisionVacation() {
// code to calculate vacation based on hours worked to date
// ...
// code to ensure vacation meets US minimums
// ...
// code to apply vaction to payroll record
// ...
}
public void accrueEUDivisionVacation() {
// code to calculate vacation based on hours worked to date
// ...
// code to ensure vacation meets EU minimums
// ...
// code to apply vaction to payroll record
// ...
}
}
除了计算法定最少数量假期的部分,accrueUSDivisionVacation
和accrue-EuropeanDivisionVacation
中有大量代码雷同。那部分的算法,依据员工类型而变。
可以通过应用模板方法模式来消除明显的重复。
abstract public class VacationPolicy {
public void accrueVacation() {
calculateBaseVacationHours();
alterForLegalMinimums();
applyToPayroll();
}
private void calculateBaseVacationHours() { /* ... */ };
abstract protected void alterForLegalMinimums();
private void applyToPayroll() { /* ... */ };
}
public class USVacationPolicy extends VacationPolicy {
@Override protected void alterForLegalMinimums() {
// US specific logic
}
}
public class EUVacationPolicy extends VacationPolicy {
@Override protected void alterForLegalMinimums() {
// EU specific logic
}
}
子类填充了accrueVacation
算法中的“空洞”,提供不重复的信息。
12.5 表达力
我们中的大多数人都经历过费解代码的纠缠。我们中的许多人自己就编写过费解的代码。写出自己能理解的代码很容易,因为在写这些代码时,我们正深入于要解决的问题中。代码的其他维护者不会那么深入,也就不易理解代码。
软件项目的主要成本在于长期的维护。为了在修改时尽量降低出现缺陷的可能性,很有必要理解系统是做什么的。当系统变得越来越复杂,开发者就需要越来越多的时间来理解它,而且也极有可能误解。所以,代码应当清晰地表达其作者的意图。作者把代码写得越清晰,其他人花在理解代码上的时间也就越少,从而减少缺陷,缩减维护成本。
可以通过选用好名称来表达。我们想要听到好类名和好函数名,而且在查看其权责时不会大吃一惊。
也可以通过保持函数和类尺寸短小来表达。短小的类和函数通常易于命名,易于编写,易于理解。
还可以通过采用标准命名法来表达。例如,设计模式很大程度上关乎沟通和表达。通过在实现这些模式的类的名称中采用标准模式名,如COMMAND或VISITOR,就能充分地向其他开发者描述你的设计。
编写良好的单元测试也具有表达性。测试的主要目的之一就是通过实例起到文档的作用。读到测试的人应该能很快理解某个类是做什么的。
不过,做到有表达力的最重要方式却是尝试。有太多时候,我们一旦写出能工作的代码,就转移到下一个问题上,而没有下足功夫调整代码,让后来者易于阅读。记住,下一位读代码的人最有可能是你自己。
所以,多少尊重一下你的手艺吧。花一点点时间在每个函数和类上。选用较好的名称,将大函数切分为小函数,时时照拂自己创建的东西。用心是最珍贵的资源。
12.6 尽可能少的类和方法
即便是消除重复、代码表达力和SRP等最基础的概念,也会被过度使用。为了保持类和函数短小,我们可能会造出太多的细小类和方法。所以这条规则也主张函数和类的数量要少。
类和方法的数量太多,有时是由毫无意义的教条主义导致的。例如,某个编码标准就坚称应当为每个类创建接口。也有开发者认为,字段和行为必须切分到数据类和行为类中。应该抵制这类教条,采用更实用的手段。
我们的目标是在保持函数和类短小的同时,保持整个系统短小精悍。不过要记住,这在关于简单设计的4条规则里面是优先级最低的一条。所以,尽管使类和函数的数量尽量少是很重要的,但更重要的却是测试、消除重复和表达力。
12.7 小结
有没有能替代经验的一套简单实践手段呢?当然不会有。另外,本章中写到的实践来自本书作者数十年经验的精练总结。遵循简单设计的实践手段,开发者不必经年学习就能掌握好的原则和模式。