题目
设 r , s , t r, s, t r,s,t 是三个互不相同的数,且 A = { r , s , t } A = \{r, s, t\} A={r,s,t}, B = { r 2 , s 2 , t 2 } B = \{r^2, s^2, t^2\} B={r2,s2,t2}, C = { r s , s t , r t } C = \{rs, st, rt\} C={rs,st,rt}
若
A
=
B
=
C
A = B = C
A=B=C
则
{
r
,
s
,
t
}
=
{
1
,
ω
,
ω
2
}
\{r, s, t\} = \{1, \omega, \omega^2\}
{r,s,t}={1,ω,ω2}其中
ω
=
−
1
±
3
i
2
\omega = \frac{-1 \pm \sqrt{3}\mathrm{i}}{2}
ω=2−1±3i,
i
\mathrm{i}
i 是虚数单位。
解析
由集合相等知道:
r
+
s
+
t
=
r
2
+
s
2
+
t
2
=
r
s
+
s
t
+
r
t
=
K
r+s+t=r^2+s^2+t^2=rs+st+rt=K
r+s+t=r2+s2+t2=rs+st+rt=K
有三元完全平方公式可得:
(
r
+
s
+
t
)
2
=
(
r
2
+
s
2
+
t
2
)
+
(
r
s
+
s
t
+
r
t
)
\left(r+s+t\right)^2=(r^2+s^2+t^2)+(rs+st+rt)
(r+s+t)2=(r2+s2+t2)+(rs+st+rt)
得到:
K
2
=
3
K
K^2=3K
K2=3K
故:
K
=
0
或
K
=
3
K=0\text{或}K=3
K=0或K=3
再从乘积关系:
r
s
t
=
(
r
s
t
)
2
⇒
r
s
t
=
1
rst=(rst)^2 \Rightarrow rst=1
rst=(rst)2⇒rst=1
由三元方程组的韦达定理:
当
K
=
0
K=0
K=0的时候,
r
,
s
,
t
r,s,t
r,s,t是方程:
x
3
−
1
=
0
x^{3}-1=0
x3−1=0的三个根:
x
1
=
−
1
+
3
i
2
,
x
2
=
−
1
−
3
i
2
,
x
3
=
1
x_1=\frac{-1 + \sqrt{3}\mathrm{i}}{2},x_2=\frac{-1 - \sqrt{3}\mathrm{i}}{2},x_3=1
x1=2−1+3i,x2=2−1−3i,x3=1
当
K
=
3
K=3
K=3的时候,
r
,
s
,
t
r,s,t
r,s,t是方程:
x
3
−
3
x
2
+
3
x
−
1
=
0
x^{3}-3x^2+3x-1=0
x3−3x2+3x−1=0的三个根
x
i
=
1
,
i
=
1
,
2
,
3
x_i=1,i=1,2,3
xi=1,i=1,2,3舍去。