解锁DeepSeek潜能:Docker+Ollama打造本地大模型部署新范式

news2025/3/29 8:31:42

🐇明明跟你说过:个人主页

🏅个人专栏:《深度探秘:AI界的007》 🏅

🔖行路有良友,便是天堂🔖

目录

一、引言

1、什么是Docker

2、什么是Ollama

二、准备工作

1、操作系统

2、镜像准备

三、安装

1、安装Docker

2、启动Ollama

3、拉取Deepseek大模型

4、启动Deepseek 


一、引言

1、什么是Docker

Docker:就像一个“打包好的App”

想象一下,你写了一个很棒的程序,在自己的电脑上运行得很好。但当你把它发给别人,可能会遇到各种问题:

  • “这个软件需要 Python 3.8,但我只有 Python 3.6!”

  • “我没有你用的那个库,安装失败了!”

  • “你的程序要跑在 Linux,我的电脑是 Windows!”

💡 Docker 的作用:它就像一个“打包好的 App”,把你的软件、依赖、环境、系统配置等 全部封装到一个“容器” 里,别人拿到这个容器,就能直接运行,而不用关心它内部的细节。


🚀 把 Docker 想象成“集装箱”

传统运输 vs. 集装箱运输

以前(传统部署)

  • 货物(程序)需要不同的包装方式(运行环境)

  • 货物可能损坏(环境不兼容)

  • 装卸麻烦(程序迁移难)

有了 Docker(容器部署)

  • 货物装进标准化集装箱(Docker 容器)

  • 不管运到哪里,集装箱里东西不变(程序环境一致)

  • 码头和船只可以直接装卸(轻松部署到不同系统)

Docker 让软件像“集装箱”一样标准化、可移植、易部署! 🚢

2、什么是Ollama

Ollama 是一个本地运行大语言模型(LLM)的工具,它可以让你 在自己的电脑上直接运行 AI 模型,而不需要连接云端服务器。

💡 简单来说:Ollama 让你像运行普通软件一样,轻松在本地使用 ChatGPT、Llama、Mistral、Gemma 等大语言模型。

🚀 Ollama 的核心特点

  1. 本地运行 🏠

    • 你不需要联网,也不用担心隐私问题,所有计算都在你的电脑上完成。

  2. 支持多种开源模型 📚

    • 可以运行 Llama 3、Mistral、Gemma、Code Llama 等不同的大模型。

  3. 易于安装和使用 🔧

    • 只需要几条命令,就能下载并运行 AI 模型。

  4. 轻量化优化

    • 适配 Mac(Apple Silicon)、Linux 和 Windows,支持 GPU 加速,让模型运行更快。

  5. 离线推理 🔒

    • 适合不想依赖 OpenAI API 或其他云端 AI 服务的用户。

二、准备工作

1、操作系统

这里我们使用的操作系统为Centos 7.9,配置为4核8G,大家也可以使用其他的Linux发行版本,或者使用Windows。

2、镜像准备

如果已经安装了Docker,可以提前准备好镜像,ollama/ollama,镜像比较大,拉取会耗一些时间

三、安装

1、安装Docker

1.关闭防火墙

systemctl stop firewalld && systemctl disabled firewalld

2.关闭SELinux

setenforce 0

3.更换yum源

rm -f /etc/yum.repos.d/*
curl -o /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyun.com/repo/Centos-7.repo
yum clean all && yum makecache

4.安装依赖项

yum install -y yum-utils device-mapper-persistent-data lvm2

5. 添加Docker源

yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo

 6.安装Docker

yum install docker-ce -y

7.添加Docker镜像加速器

vim /etc/docker/daemon.json
# 添加如下内容
{
 
"registry-mirrors": [
 
"https://docker.m.daocloud.io",
 
"https://noohub.ru",
 
"https://huecker.io",
 
"https://dockerhub.timeweb.cloud",
 
"https://0c105db5188026850f80c001def654a0.mirror.swr.myhuaweicloud.com",
 
"https://5tqw56kt.mirror.aliyuncs.com",
 
"https://docker.1panel.live",
 
"http://mirrors.ustc.edu.cn/",
 
"http://mirror.azure.cn/",
 
"https://hub.rat.dev/",
 
"https://docker.ckyl.me/",
 
"https://docker.chenby.cn",
 
"https://docker.hpcloud.cloud",
 
"https://docker.m.daocloud.io"
 
]
 
}

8.启动Docker

systemctl start docker

2、启动Ollama

1.启动Ollama容器

docker run -itd -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
  • docker run    运行一个新的 Docker 容器
  • -itd    组合多个选项:
    • -i(保持标准输入)
    • -t(分配终端)
    • -d(后台运行容器)
  • -v ollama:/root/.ollama    挂载数据卷,把 ollama 这个 Docker 数据卷 绑定到容器的 /root/.ollama 目录,确保数据持久化(如下载的模型不会丢失)。
  • -p 11434:11434    端口映射,把 宿主机(本机)的 11434 端口 映射到 容器 内部的 11434 端口,这样宿主机可以通过 http://localhost:11434 访问 Ollama 服务。
  • --name ollama    指定 容器名称 为 ollama,方便管理和启动。
  • ollama/ollama    使用的 Docker 镜像,这里是 官方的 Ollama 镜像。

如果是使用GPU运行,则用下面的命令启动

docker run -itd --name ollama  --gpus=all -v ollama:/root/.ollama -p 11434:11434  ollama/ollama

2.查看Ollama容器

docker ps

  

3、拉取Deepseek大模型

1.进入到容器中 

docker exec -it ollama /bin/bash

2.拉取模型

ollama pull  deepseek-r1:7b

  

在官网中,有许多Deepseek的模型,这里主要是演示,所以拉取了一个较小的模型

官网地址:deepseek-r1

  

3.查看模型

ollama list

  

4、启动Deepseek 

ollama run deepseek-r1:7b

  

 💕💕💕每一次的分享都是一次成长的旅程,感谢您的陪伴和关注。希望这些文章能陪伴您走过技术的一段旅程,共同见证成长和进步!😺😺😺

🧨🧨🧨让我们一起在技术的海洋中探索前行,共同书写美好的未来!!!  

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2321970.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

c++R 格式

问题描述 小蓝最近在研究一种浮点数的表示方法:RR 格式。对于一个大于 0 的浮点数 dd,可以用 RR 格式的整数来表示。给定一个转换参数 nn,将浮点数转换为 RR 格式整数的做法是: 将浮点数乘以 2n2n; 四舍五入到最接近的整数。 …

qt QOffscreenSurface详解

1、概述 QOffscreenSurface 是 Qt 中用于离屏渲染的一个类。它允许在不直接与屏幕交互的情况下进行 OpenGL 渲染操作,常用于生成纹理、预渲染场景等。通过 QOffscreenSurface,可以在后台创建一个渲染表面,进行绘制操作,并将结果捕…

基于Spring Boot的消防物资存储系统的设计与实现(LW+源码+讲解)

专注于大学生项目实战开发,讲解,毕业答疑辅导,欢迎高校老师/同行前辈交流合作✌。 技术范围:SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容:…

深度学习算法清单

目录 1. 神经网络必备基础知识点 2. 神经网络前向传播与反向传播 3. 网络模型整体架构分析实例 4. 神经网络建模效果分析 5. 激活函数与过拟合问题解决 6. 卷积神经网络核心知识点 7. 卷积建模流程与各参数作用分析 8. 池化层的作用与效果 9. 经典卷积神经网络架构分析…

【杂记三】Cython加速模块cython_nms未编译

一、问题 from cython_nms import nms as cnms ModuleNotFoundError: No module named cython_nms Github download 需要生成如下的 二、安装编译编译安装 cython_nms 1. 确保已经安装了 Cython conda activate your-env pip install cython2. 编译编译 cython_nms 进入编译…

订票系统|基于Java+vue的火车票订票系统(源码+数据库+文档)

订票系统目录 基于Springbootvue的火车票订票系统 一、前言 二、系统设计 三、系统功能设计 1会员信息管理 2 车次信息管理 3订票订单管理 4留言板管理 四、数据库设计 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八、源码获取: 博主介绍…

近场通信(NFC)在电动车启动系统中的技术实现路径

电动车NFC一键启动系统基于13.56MHz频段实现非接触控制,技术方案要点如下: ‌系统架构‌ ‌硬件核心‌ NFC芯片(如N32G45x)处理通信协议,支持手机/卡片识别STM32主控解析指令,AES-128加密模块保障双向认证…

斜线、短横、空格,三种分隔日期的优雅解析(Python | DeepSeek)

标准日期解析操作,str.replace链式如灵蛇蜿蜒,三元表达式像空灵仙家妙法。 笔记模板由python脚本于2025-03-25 22:32:24创建,本篇笔记适合三元表达式、字符串操作修习的coder翻阅。 【学习的细节是欢悦的历程】 博客的核心价值:在…

自动化逆向框架使用(Objection+Radare2)

1. 工具链架构与核心优势 1.1 动静结合逆向体系 graph LR A[动态分析] -->|Objection实时Hook| B[关键点定位] B --> C[行为数据捕获] D[静态分析] -->|Radare2深度解析| E[控制流重建] E --> F[漏洞模式识别] B --> F C --> F 组合优势对比&…

[特殊字符] 2025蓝桥杯备赛Day13——P10984 [蓝桥杯 2023 国 Python A] 残缺的数字

🔍 2025蓝桥杯备赛Day13——P10984 [蓝桥杯 2023 国 Python A] 残缺的数字 🚀 题目速览 题目难度:⭐⭐⭐(需掌握位运算与组合数学) 考察重点:二进制状态处理、位运算、乘法原理、枚举 P10984 [蓝桥杯 2…

线程控制与线程库

目录 解析tid 线程的地址空间布局 线程栈 我们来学习线程控制与线程库 解析tid #include<iostream> #include<string> #include<cstdio> #include<cstring> #include<unistd.h> #include<thread> using namespace std;int shared_val…

P1182 数列分段 Section II

P1182 数列分段 Section II - 洛谷 题目描述 对于给定的一个长度为 N 的正整数数列 A1​∼AN​&#xff0c;现要将其分成 M&#xff08;M≤N&#xff09;段&#xff0c;并要求每段连续&#xff0c;且每段和的最大值最小。 关于最大值最小&#xff1a; 例如一数列 4 2 4 5 1…

比手动备份快 Iperius全自动加密备份,NAS/云盘/磁带机全兼容

IperiusBackupFull是一款专为服务器和工作站设计的备份解决方案&#xff0c;它同时也是一款针对Windows 7/8/10/11/Server系统的简洁且可靠的备份软件。该软件支持增量备份、数据同步以及驱动器镜像&#xff0c;确保能够实现完全的系统恢复。在备份存储方面&#xff0c;Iperius…

2025最新版Ubuntu Server版本Ubuntu 24.04.2 LTS下载与安装-详细教程,细致到每一步都有说明

官网 https://ubuntu.com/ 下载 点击菜单 Prodercts> Ubuntu OS>Ubuntu Server 点击下载 下载后会有个弹窗 安装 选择第一个 install Ubuntu Server 直接默认&#xff0c;选择English 【默认】 选择键盘布局【默认】 选择安装配置【默认】 配置网络 我这里选择…

更新测试环境构建命令以解决构建失败问题

本段代码解决 更新测试环境构建命令以解决构建失败问题 //本项目是reactumi3antdesign 搭建的后台管理系统 "build:test": "cross-env UMI_ENVtest NODE_OPTIONS--openssl-legacy-provider umi build"**原因&#xff1a;**Node.js v17 的 OpenSSL 3.0 与旧…

树莓派5-GPIO和40针引脚

1.树莓派5引脚图 2.GPIO 引脚作用 (1) 电压 板上有两个 5V 引脚和两个 3.3V 引脚&#xff0c;以及一些不可配置的接地引脚 (0V)。其余引脚均为通用 3.3V 引 脚&#xff0c;这意味着输出设置为 3.3V&#xff0c;输入可接 3.3V。 (2) 输出 指定为输出引脚的 GPIO 引脚可设置为…

【数据库】sql错题详解

1. 执行子查询 SELECT 供应商号 FROM 订购单 WHERE 职工号 IN (E1, E3) GROUP BY 供应商号 HAVING COUNT(DISTINCT 职工号) 2筛选职工号为 E1 或 E3 的记录&#xff1a; 依据 WHERE 职工号 IN (E1, E3) 这个条件&#xff0c;从 订购单 表中把职工号为 E1 或者 E3 的记录筛选出…

C#重写treeView控件

1.先准备两张图片downdrop.png、downdrop_open.png放在项目Resources里 2.新建用户控件BaseTreeView控件 3.重写控件继承TreeView&#xff0c;记得删除AutoScaleMode这一行&#xff0c;否则会报错 public partial class BaseTreeView : TreeView {//这个属性貌似不起作用&…

ArcGIS 10.8.1之后发布栅格数据的MapServer 动态工作空间 替换数据源渲染问题

背景 经过测试&#xff0c;Server 10.8.1、11.0、11.1发布相关服务设置动态空间之后&#xff0c;前端都无法自动读取同名的clr色彩映射表文件进行渲染&#xff0c;服务都是由ArcGIS Pro进行发布。 原因 基于ArcMap发布的服务才支持&#xff0c;但是10.8.1之后不支持ArcMap发…

Java集合框架深度剖析:从数据结构到实战应用

引言 Java集合框架是Java开发中的核心组件之一&#xff0c;其设计目标是提供高性能、高复用性的数据容器。无论是数据处理、缓存设计还是高并发场景&#xff0c;集合框架都扮演着关键角色。本文将从List、Map、Set三大核心接口出发&#xff0c;深入剖析其主流实现类&#xff0…