JVM常见概念之条件移动

news2025/3/25 21:51:18

问题

当我们有分支频率数据时,有什么有趣的技巧可以做吗?什么是条件移动?

基础知识

如果您需要在来自一个分支的两个结果之间进行选择,那么您可以在 ISA 级别做两件不同的事情。

首先,你可以创建一个分支:

    # %r = (%rCond == 1) ? $v1 : $v2
    cmp %rCond, $1
    jne A
    mov %r, $v1
    jmp E
 A: mov %r, $v2
 E:

其次,您可以执行依赖于比较结果的预测指令 。在 x86 中,这采用条件移动 (CMOV) 的形式,当选定条件成立时执行操作:

# %r = (%rCond == 1) ? $v1 : $v2
  mov %r, $v1      ; put $v1 to %r
  cmp %rCond, ...
  cmovne %r, $v2   ; put $v2 to %r if condition is false

执行条件移动的优点是它有时会生成更紧凑的代码,就像在这个例子中一样,并且它不会受到可能的分支预测错误惩罚。缺点是它需要在选择返回哪一边之前计算两边,这可能会花费过多的 CPU 周期,增加寄存器压力等。在分支情况下,我们可以选择在检查条件后不计算内容。预测良好的分支将优于条件移动。

因此,是否执行条件移动的选择在很大程度上取决于其成本预测。这就是分支分析可以帮助我们的地方:它可以说出哪些分支可能没有被完美预测,因此适合 CMOV 替换。当然, 实际成本模型还包括我们正在处理的参数类型、两个计算分支的相对深度等。

实验

源码-用例1

@Warmup(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)
@Measurement(iterations = 5, time = 1, timeUnit = TimeUnit.SECONDS)
@Fork(1)
@State(Scope.Benchmark)
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
public class BranchFrequency {
    @Benchmark
    public void fair() {
        doCall(true);
        doCall(false);
    }

    @CompilerControl(CompilerControl.Mode.DONT_INLINE)
    public int doCall(boolean condition) {
        if (condition) {
            return 1;
        } else {
            return 2;
        }
    }
}

执行结果

我们在每次调用时都会在分支之间进行切换,这意味着它的运行时配置文件在它们之间大约是 50%-50%。如果我们通过提供 -XX:ConditionalMoveLimit=0 来限制条件移动替换,那么我们就可以清楚地看到替换的发生。

# doCall, out of box variant
  4.36%  ...4ac: mov    $0x1,%r11d         ; move $1 -> %r11
  3.24%  ...4b2: mov    $0x2,%eax          ; move $2 -> %res
  8.46%  ...4b7: test   %edx,%edx          ; test boolean
  0.02%  ...4b9: cmovne %r11d,%eax         ; if false, move %r11 -> %res
  7.88%  ...4bd: add    $0x10,%rsp         ; exit the method
  8.12%  ...4c1: pop    %rbp
 18.60%  ...4c2: cmp    0x340(%r15),%rsp
         ...4c9: ja     ...4d0
  0.14%  ...4cf: retq

# doCall, CMOV conversion inhibited
  6.48%    ...cac: test   %edx,%edx         ; test boolean
        ╭  ...cae: je     ...cc8
        │                                   ; if true...
        │  ...cb0: mov    $0x1,%eax         ; move $1 -> %res
  7.41% │↗ ...cb5: add    $0x10,%rsp        ; exit the method
  0.02% ││ ...cb9: pop    %rbp
 27.43% ││ ...cba: cmp    0x340(%r15),%rsp
        ││ ...cc1: ja     ...ccf
  3.28% ││ ...cc7: retq
        ││                                  ; if false...
  7.04% ↘│ ...cc8: mov    $0x2,%eax         ; move $2 -> %res
  0.02%  ╰ ...ccd: jmp    ...cb5            ; jump back

在此示例中,CMOV 版本的表现稍好一些:

Benchmark                              Mode  Cnt   Score    Error  Units

# Branches
BranchFrequency.fair                   avgt   25   5.422 ±  0.026  ns/op
BranchFrequency.fair:L1-dcache-loads   avgt    5  12.078 ±  0.226   #/op
BranchFrequency.fair:L1-dcache-stores  avgt    5   5.037 ±  0.120   #/op
BranchFrequency.fair:branch-misses     avgt    5   0.001 ±  0.003   #/op
BranchFrequency.fair:branches          avgt    5  10.037 ±  0.216   #/op
BranchFrequency.fair:cycles            avgt    5  14.659 ±  0.285   #/op
BranchFrequency.fair:instructions      avgt    5  35.184 ±  0.559   #/op

# CMOVs
BranchFrequency.fair                   avgt   25   4.799 ±  0.094  ns/op
BranchFrequency.fair:L1-dcache-loads   avgt    5  12.014 ±  0.329   #/op
BranchFrequency.fair:L1-dcache-stores  avgt    5   5.005 ±  0.167   #/op
BranchFrequency.fair:branch-misses     avgt    510⁻⁴            #/op
BranchFrequency.fair:branches          avgt    5   7.054 ±  0.118   #/op
BranchFrequency.fair:cycles            avgt    5  12.964 ±  1.451   #/op
BranchFrequency.fair:instructions      avgt    5  36.285 ±  0.713   #/op

您可能认为这是因为 CMOV 没有分支预测失误惩罚,但这种解释与计数器不一致。请注意,在两种情况下,“分支失误”几乎为零。这是因为硬件分支预测器实际上可以记住一个短暂的分支历史,而这种反复出现的分支对它们来说没有任何问题。性能差异的实际原因是分支情况下的跳跃:我们在关键路径上有一条额外的控制流指令。

源码-用例2

@Warmup(iterations = 5, time = 500, timeUnit = TimeUnit.MILLISECONDS)
@Measurement(iterations = 5, time = 500, timeUnit = TimeUnit.MILLISECONDS)
@Fork(1)
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
@State(Scope.Thread)
public class AdjustableBranchFreq {

    @Param("50")
    int percent;

    boolean[] arr;

    @Setup(Level.Iteration)
    public void setup() {
        final int SIZE = 100_000;
        final int Q = 1_000_000;
        final int THRESH = percent * Q / 100;
        arr = new boolean[SIZE];
        ThreadLocalRandom current = ThreadLocalRandom.current();
        for (int c = 0; c < SIZE; c++) {
            arr[c] = current.nextInt(Q) < THRESH;
        }

        // Avoid uncommon traps on both branches.
        doCall(true);
        doCall(false);
    }

    @Benchmark
    public void test() {
        for (boolean cond : arr) {
            doCall(cond);
        }
    }

    @CompilerControl(CompilerControl.Mode.DONT_INLINE)
    public int doCall(boolean condition) {
        if (condition) {
            return 1;
        } else {
            return 2;
        }
    }
}

执行结果

使用不同的 percent 值和 -prof perfnorm JMH 分析器运行它将产生以下结果:
在这里插入图片描述依据上图,你可以清楚地看到几件事:

  • 每个测试的分支数约为 5,而 CMOV 转换将其降至 4。这与之前的反汇编转储相关:我们将测试中的一个分支转换为 CMOV。另外 4 个分支来自测试基础设施本身。
  • 如果没有 CMOV,分支测试性能会受到影响,在 50% 的分支概率下会变得最差。这个峰值反映了硬件分支预测器几乎完全混乱,因为它每次操作都会遇到大约 0.5 次分支失误。这意味着分支预测器并不是一直猜错(这太荒谬了!),而只是一半的时间猜错。我推测基于历史的预测器会放弃,让静态预测器选择最近的分支,而我们只选择了一半的时间。
  • 使用 CMOV 后,我们可以看到操作时间几乎持平 。该图表明 CMOV 成本模型对于此测试来说可能过于保守,并且切换得有点晚。这并不一定意味着它有错误,因为其他情况的表现很可能会有所不同。尽管如此,当进行 CMOV 转换时,对分支情况的改进是巨大的。
  • 您可能会注意到,当分支预测准确率为 >97% 时,分支变体会低于 CMOV 中间平均值。当然,这又是测试、硬件、虚拟机特有的事情。

总结

分支分析允许在执行概率敏感指令选择时做出或多或少明智的选择。条件移动替换通常使用分支频率信息来驱动替换。这再次强调了使用与真实数据类似的数据来预热 JIT 编译代码的必要性,以便编译器能够针对特定情况进行有效优化。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2320456.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Android AI ChatBot-v1.6.3-28-开心版[免登录使用GPT-4o和DeepSeek]

Android AI ChatBot- 链接&#xff1a;https://pan.xunlei.com/s/VOLi1Ua071S6QZBGixcVL5eeA1?pwdp3tt# 免登录使用GPT-4o和DeepSeek

集成学习(上):Bagging集成方法

一、什么是集成学习&#xff1f; 在机器学习的世界里&#xff0c;没有哪个模型是完美无缺的。就像古希腊神话中的"盲人摸象"&#xff0c;单个模型往往只能捕捉到数据特征的某个侧面。但当我们把多个模型的智慧集合起来&#xff0c;就能像拼图一样还原出完整的真相&a…

DeepSeek R1 本地部署指南 (3) - 更换本地部署模型 Windows/macOS 通用

0.准备 完成 Windows 或 macOS 安装&#xff1a; DeepSeek R1 本地部署指南 (1) - Windows 本地部署-CSDN博客 DeepSeek R1 本地部署指南 (2) - macOS 本地部署-CSDN博客 以下内容 Windows 和 macOS 命令执行相同&#xff1a; Windows 管理员启动&#xff1a;命令提示符 CMD ma…

【TI MSPM0】Timer学习

一、计数器 加法计数器&#xff1a;每进入一个脉冲&#xff0c;就加一减法计算器&#xff1a;每进入一个脉冲&#xff0c;就减一 当计数器减到0&#xff0c;触发中断 1.最短计时时间 当时钟周期为1khz时&#xff0c;最短计时时间为1ms&#xff0c;最长计时时间为65535ms 当时…

Windows部署deepseek R1训练数据后通过AnythingLLM当服务器创建问答页面

如果要了解Windows部署Ollama 、deepseek R1请看我上一篇内容。 这是接上一篇的。 AnythingLLM是一个开源的全栈AI客户端&#xff0c;支持本地部署和API集成。它可以将任何文档或内容转化为上下文&#xff0c;供各种语言模型&#xff08;LLM&#xff09;在对话中使用。以下是…

信奥赛CSP-J复赛集训(模拟算法专题)(27):P5016 [NOIP 2018 普及组] 龙虎斗

信奥赛CSP-J复赛集训(模拟算法专题)(27):P5016 [NOIP 2018 普及组] 龙虎斗 题目背景 NOIP2018 普及组 T2 题目描述 轩轩和凯凯正在玩一款叫《龙虎斗》的游戏,游戏的棋盘是一条线段,线段上有 n n n 个兵营(自左至右编号 1 ∼ n 1 \sim n 1∼n),相邻编号的兵营之间…

多模态大模型常见问题

1.视觉编码器和 LLM 连接时&#xff0c;使用 BLIP2中 Q-Former那种复杂的 Adaptor 好还是 LLaVA中简单的 MLP 好&#xff0c;说说各自的优缺点&#xff1f; Q-Former&#xff08;BLIP2&#xff09;&#xff1a; 优点&#xff1a;Q-Former 通过查询机制有效融合了视觉和语言特征…

SpringBoot项目实战(初级)

目录 一、数据库搭建 二、代码开发 1.pom.xml 2.thymeleaf模块处理的配置类 3.application配置文件 4.配置&#xff08;在启动类中&#xff09; 5.编写数据层 ②编写dao层 ③编写service层 接口 实现类 注意 补充&#xff08;注入的3个注解&#xff09; 1.AutoWir…

计算机网络——总结

01. 网络的发展及体系结构 网络演进历程 从1969年ARPANET的4个节点发展到如今覆盖全球的互联网&#xff0c;网络技术经历了电路交换到分组交换、有线连接到无线覆盖的革命性变革。5G时代的到来使得网络传输速度突破10Gbps&#xff0c;物联网设备数量突破百亿级别。 网络体系…

Umi-OCR- OCR 文字识别工具,支持截图、批量图片排版解析

Umi-OCR 是免费开源的离线 OCR 文字识别软件。无需联网&#xff0c;解压即用&#xff0c;支持截图、批量图片、PDF 扫描件的文字识别&#xff0c;能识别数学公式、二维码&#xff0c;可生成双层可搜索 PDF。内置多语言识别库&#xff0c;界面支持多语言切换&#xff0c;提供命令…

高速网络包处理,基础网络协议上内核态直接处理数据包,XDP技术的原理

文章目录 预备知识TCP/IP 网络模型&#xff08;4层、7层&#xff09;iptables/netfilterlinux网络为什么慢 DPDKXDPBFPeBPFXDPXDP 程序典型执行流通过网络协议栈的入包XDP 组成 使用 GO 编写 XDP 程序明确流程选择eBPF库编写eBPF代码编写Go代码动态更新黑名单 预备知识 TCP/IP…

C++:背包问题习题

1. 货币系统 1371. 货币系统 - AcWing题库 给定 V 种货币&#xff08;单位&#xff1a;元&#xff09;&#xff0c;每种货币使用的次数不限。 不同种类的货币&#xff0c;面值可能是相同的。 现在&#xff0c;要你用这 V 种货币凑出 N 元钱&#xff0c;请问共有多少种不同的…

数据可信安全流通实战,隐语开源社区Meetup武汉站开放报名

隐语开源社区 Meetup 系列再出发&#xff01;2025 年将以武汉为始发站&#xff0c;聚焦"技术赋能场景驱动"&#xff0c;希望将先进技术深度融入数据要素流转的各个环节&#xff0c;推动其在实际应用场景中落地生根&#xff0c;助力释放数据要素的最大潜能&#xff01…

java使用Apache POI 操作word文档

项目背景&#xff1a; 当我们对一些word文档&#xff08;该文档包含很多的标题比如 1.1 &#xff0c;1.2 &#xff0c; 1.2.1.1&#xff0c; 1.2.2.3&#xff09;当我们删除其中一项或者几项时&#xff0c;需要手动的对后续的进行补充。该功能主要是对标题进行自动的补充。 具…

免费开源的NAS解决方案:TrueNAS

TrueNAS是业内知名的FreeNAS系统的升级版&#xff0c;是一款开源的网络存储系统&#xff0c;具有高性能、稳定性和易用性等优点。 TrueNAS目前有三个版本&#xff0c;分别是TrueNAS CORE、TrueNAS ENTERPRISE、TrueNAS SCALE。其中&#xff0c;TrueNAS CORE基于FreeBSD开发&…

LeetCode热题100精讲——Top1:两数之和【哈希】

你好&#xff0c;我是安然无虞。 文章目录 题目背景两数之和C解法Python解法 题目背景 如果大家对于 哈希 类型的概念并不熟悉, 可以先看我之前为此专门写的算法详解: 蓝桥杯算法竞赛系列第九章巧解哈希题&#xff0c;用这3种数据类型足矣 两数之和 题目链接&#xff1a;两数…

Rocky9.5基于sealos快速部署k8s集群

首先需要下载 Sealos 命令行工具&#xff0c;sealos 是一个简单的 Golang 二进制文件&#xff0c;可以安装在大多数 Linux 操作系统中。 以下是一些基本的安装要求&#xff1a; 每个集群节点应该有不同的主机名。主机名不要带下划线。 所有节点的时间需要同步。 需要在 K8s …

阿里云服务器环境部署 四 MySQL主从配置

安装MySQL 导入mysql镜像 docker load -i /opt/dockerinstall/mysql/mysql-8.1.0.tar docker run --privilegedtrue --name mysql8 --restartunless-stopped -e MYSQL_ROOT_PASSWORD123456 -p 3306:3306 -v /usr/local/mysql/logs:/var/log/mysql -v /usr/local/mysql/d…

项目日记 -云备份 -服务器配置信息模块

博客主页&#xff1a;【夜泉_ly】 本文专栏&#xff1a;【项目日记-云备份】 欢迎点赞&#x1f44d;收藏⭐关注❤️ 代码已上传 gitee 目录 前言配置信息文件文件配置类getInstance 获得实例readConfigFile 读取配置信息文件 测试 #mermaid-svg-ewlCpjdOf0q0VTLI {font-family:…

Mysql配套测试之查询篇

&#x1f3dd;️专栏&#xff1a;Mysql_猫咪-9527的博客-CSDN博客 &#x1f305;主页&#xff1a;猫咪-9527-CSDN博客 “欲穷千里目&#xff0c;更上一层楼。会当凌绝顶&#xff0c;一览众山小。” 目录 条件查询简单测试&#xff1a; 1.查询英语成绩不及格的同学(<60) 2…