多模态大模型常见问题

news2025/3/25 8:57:41

1.视觉编码器和 LLM 连接时,使用 BLIP2中 Q-Former那种复杂的 Adaptor 好还是 LLaVA中简单的 MLP 好,说说各自的优缺点?

Q-Former(BLIP2):

  • 优点:Q-Former 通过查询机制有效融合了视觉和语言特征,使得模型能够更好地处理视觉-语言任务,尤其是在多模态推理任务中表现优秀。

  • 缺点:Q-Former 结构较为复杂,计算开销较大。

MLP(LLaVA):

  • 优点:MLP 比较简单,计算量小,易于实现,适用于一些较为简单的任务。

  • 缺点:相较于 Q-Former,MLP 在处理复杂的视觉-语言融合任务时效果较差,尤其是在推理任务中。

2.代码:实现多头自注意力

多头注意力代码实现如下:

import torch
import torch.nn.functional as F

class MultiHeadAttention(torch.nn.Module):   
     def __init__(self, embed_size, heads):        
        super(MultiHeadAttention, self).__init__()        
        self.embed_size = embed_size        
        self.heads = heads        
        self.head_dim = embed_size // heads               
        assert self.head_dim * heads == embed_size, "Embedding size must be divisible by heads"                

        self.values = torch.nn.Linear(embed_size, embed_size)       
        self.keys = torch.nn.Linear(embed_size, embed_size)        
        self.queries = torch.nn.Linear(embed_size, embed_size)        
        self.fc_out = torch.nn.Linear(embed_size, embed_size)        
   def forward(self, values, keys, query, mask):        
        N = query.shape[0]                
        value_len, key_len, query_len = values.shape[1], keys.shape[1], query.shape[1]                    
        values = values.reshape(N, value_len, self.heads, self.head_dim)        
        keys = keys.reshape(N, key_len, self.heads, self.head_dim)        
        query = query.reshape(N, query_len, self.heads, self.head_dim)                
        values = values.permute(2, 0, 1, 3)        
        keys = keys.permute(2, 0, 1, 3)        
        query = query.permute(2, 0, 1, 3)                
        energy = torch.matmul(query, keys.permute(0, 1, 3, 2))                
        if mask is not None:            
            energy = energy.masked_fill(mask == 0, float('-1e20'))                        
        attention = torch.nn.functional.softmax(energy / (self.head_dim ** (1 / 2)), dim=-1)                
        out = torch.matmul(attention, values)                
        out = out.permute(1, 2, 0, 3).contiguous().reshape(N, query_len, self.heads * self.head_dim)                
        out = self.fc_out(out)               
        return out

3、Qwen-VL的三个训练流程分别是什么,有什么作用

Qwen-VL 是一款基于视觉和语言的预训练大模型,其训练流程分为以下三个阶段:

      a.视觉-语言联合训练:使用大量的图像-文本对进行联合训练,以学习图像和文本之间的对齐。

       b.图像生成与理解训练:模型被训练以生成描述图像的文本,并理解不同的视觉任务。

      c.增强推理能力训练:进一步训练模型以增强其处理复杂推理任务(如图像中的逻辑推理)的能力。

4.了解哪些多模态大模型,简要介绍几个

常见的多模态大模型包括:

  • CLIP:已经介绍过,处理图像和文本之间的关系。

  • VisualBERT:将图像和文本的信息结合到同一个模型中,使用 BERT 作为编码器。

  • FLIP(Fused Latent Image-Text Pretraining):通过融合图像和文本特征来进行多模态预训练。

  • DALL-E:图像生成模型,通过文本描述生成图像。

目前多模态大模型的挑战在于:

  • 模型规模庞大,计算资源需求高。

  • 多模态数据处理的复杂性,如何有效地融合来自不同模态的信息。

  • 数据偏差问题,尤其是文本和图像之间的语义不一致。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2320447.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SpringBoot项目实战(初级)

目录 一、数据库搭建 二、代码开发 1.pom.xml 2.thymeleaf模块处理的配置类 3.application配置文件 4.配置(在启动类中) 5.编写数据层 ②编写dao层 ③编写service层 接口 实现类 注意 补充(注入的3个注解) 1.AutoWir…

计算机网络——总结

01. 网络的发展及体系结构 网络演进历程 从1969年ARPANET的4个节点发展到如今覆盖全球的互联网,网络技术经历了电路交换到分组交换、有线连接到无线覆盖的革命性变革。5G时代的到来使得网络传输速度突破10Gbps,物联网设备数量突破百亿级别。 网络体系…

Umi-OCR- OCR 文字识别工具,支持截图、批量图片排版解析

Umi-OCR 是免费开源的离线 OCR 文字识别软件。无需联网,解压即用,支持截图、批量图片、PDF 扫描件的文字识别,能识别数学公式、二维码,可生成双层可搜索 PDF。内置多语言识别库,界面支持多语言切换,提供命令…

高速网络包处理,基础网络协议上内核态直接处理数据包,XDP技术的原理

文章目录 预备知识TCP/IP 网络模型(4层、7层)iptables/netfilterlinux网络为什么慢 DPDKXDPBFPeBPFXDPXDP 程序典型执行流通过网络协议栈的入包XDP 组成 使用 GO 编写 XDP 程序明确流程选择eBPF库编写eBPF代码编写Go代码动态更新黑名单 预备知识 TCP/IP…

C++:背包问题习题

1. 货币系统 1371. 货币系统 - AcWing题库 给定 V 种货币(单位:元),每种货币使用的次数不限。 不同种类的货币,面值可能是相同的。 现在,要你用这 V 种货币凑出 N 元钱,请问共有多少种不同的…

数据可信安全流通实战,隐语开源社区Meetup武汉站开放报名

隐语开源社区 Meetup 系列再出发!2025 年将以武汉为始发站,聚焦"技术赋能场景驱动",希望将先进技术深度融入数据要素流转的各个环节,推动其在实际应用场景中落地生根,助力释放数据要素的最大潜能&#xff01…

java使用Apache POI 操作word文档

项目背景: 当我们对一些word文档(该文档包含很多的标题比如 1.1 ,1.2 , 1.2.1.1, 1.2.2.3)当我们删除其中一项或者几项时,需要手动的对后续的进行补充。该功能主要是对标题进行自动的补充。 具…

免费开源的NAS解决方案:TrueNAS

TrueNAS是业内知名的FreeNAS系统的升级版,是一款开源的网络存储系统,具有高性能、稳定性和易用性等优点。 TrueNAS目前有三个版本,分别是TrueNAS CORE、TrueNAS ENTERPRISE、TrueNAS SCALE。其中,TrueNAS CORE基于FreeBSD开发&…

LeetCode热题100精讲——Top1:两数之和【哈希】

你好,我是安然无虞。 文章目录 题目背景两数之和C解法Python解法 题目背景 如果大家对于 哈希 类型的概念并不熟悉, 可以先看我之前为此专门写的算法详解: 蓝桥杯算法竞赛系列第九章巧解哈希题,用这3种数据类型足矣 两数之和 题目链接:两数…

Rocky9.5基于sealos快速部署k8s集群

首先需要下载 Sealos 命令行工具,sealos 是一个简单的 Golang 二进制文件,可以安装在大多数 Linux 操作系统中。 以下是一些基本的安装要求: 每个集群节点应该有不同的主机名。主机名不要带下划线。 所有节点的时间需要同步。 需要在 K8s …

阿里云服务器环境部署 四 MySQL主从配置

安装MySQL 导入mysql镜像 docker load -i /opt/dockerinstall/mysql/mysql-8.1.0.tar docker run --privilegedtrue --name mysql8 --restartunless-stopped -e MYSQL_ROOT_PASSWORD123456 -p 3306:3306 -v /usr/local/mysql/logs:/var/log/mysql -v /usr/local/mysql/d…

项目日记 -云备份 -服务器配置信息模块

博客主页:【夜泉_ly】 本文专栏:【项目日记-云备份】 欢迎点赞👍收藏⭐关注❤️ 代码已上传 gitee 目录 前言配置信息文件文件配置类getInstance 获得实例readConfigFile 读取配置信息文件 测试 #mermaid-svg-ewlCpjdOf0q0VTLI {font-family:…

Mysql配套测试之查询篇

&#x1f3dd;️专栏&#xff1a;Mysql_猫咪-9527的博客-CSDN博客 &#x1f305;主页&#xff1a;猫咪-9527-CSDN博客 “欲穷千里目&#xff0c;更上一层楼。会当凌绝顶&#xff0c;一览众山小。” 目录 条件查询简单测试&#xff1a; 1.查询英语成绩不及格的同学(<60) 2…

mysql——第二课

学生表 CREATE TABLE student (id int(11) NOT NULL AUTO_INCREMENT,name varchar(255) COLLATE utf8mb4_bin DEFAULT NULL,sex varchar(255) COLLATE utf8mb4_bin DEFAULT NULL,age int(11) DEFAULT NULL,c_id int(10) DEFAULT NULL,PRIMARY KEY (id),KEY c_id (c_id),CONSTR…

Python网络编程入门

一.Socket 简称套接字&#xff0c;是进程之间通信的一个工具&#xff0c;好比现实生活中的插座&#xff0c;所有的家用电器要想工作都是基于插座进行&#xff0c;进程之间要想进行网络通信需要Socket&#xff0c;Socket好比数据的搬运工~ 2个进程之间通过Socket进行相互通讯&a…

arm linux下的读写信号量rw_semphore的实现

本文基于arm linux 5.10来介绍内核中使用的读写信号量rw remphore的实现代码。 内核中信号量结构体struct rw_semaphore的定义在include/linux/rwsem.h 32位architectures下&#xff0c;结构体struct rw_semaphore中的count的使用如下&#xff1a; 先来看信号量的定义和初始化…

C#里使用libxl的数字格式

由于EXCEL里可以表示不同的数字格式, 比如表示货币数字时,与表示普通序号的数字就不一样。 还有科学计算表示的数字使用小数点位数与普通货币也不一样。 如下所示: 要使用这些格式, 下面创建一个例子来演示保存这些数字格式: private void button11_Click(object send…

c#难点整理2

1.对象池的使用 就是先定义一系列的对象&#xff0c;用一个&#xff0c;调一个。 public class ObjectPool<T> where T : new(){private Queue<T> pool; // 用于存储对象的队列private int maxSize; // 对象池的最大容量// 构造函数public ObjectPool(int maxSi…

解锁物联网高效开发,Synaptics SYN43756E Wi-Fi 6E 芯片登场

Synaptics 的 SYN43756E 芯片是一款高性能的 Wi-Fi 6E 支持 11a/b/g/n/ac/ax 的物联网&#xff08;IoT&#xff09;SoC&#xff0c;具备多项先进特性&#xff0c;适用于多种应用场景&#xff0c;以下是其主要优势&#xff1a; 1. 广泛的应用场景 智慧家庭&#xff1a;支持多种…

DeepSeek 助力 Vue3 开发:打造丝滑的表格(Table)之添加导出数据功能

前言:哈喽,大家好,今天给大家分享一篇文章!并提供具体代码帮助大家深入理解,彻底掌握!创作不易,如果能帮助到大家或者给大家一些灵感和启发,欢迎收藏+关注哦 💕 目录 DeepSeek 助力 Vue3 开发:打造丝滑的表格(Table)之添加导出数据功能📚页面效果📚指令输入�…