《又是二叉树?递归与回溯的经典应用》

news2025/3/14 12:42:32

 

 

“ 我喜欢晴天,你恰好是最好的太阳”


226.翻转二叉树

力扣题目链接(opens new window)

翻转一棵二叉树。

226.翻转二叉树

这道题我们可以通过递归法解决,我们只要递归的把每一个节点的左右孩子反转一下就能解决了。 

 代码如下:

var invertTree = function(root) {
    // 终止条件
    if (!root) {
        return null;
    }
    // 交换左右节点
    const rightNode = root.right;
    root.right = invertTree(root.left);
    root.left = invertTree(rightNode);
    return root;
};

 

101. 对称二叉树

力扣题目链接(opens new window)

给定一个二叉树,检查它是否是镜像对称的。

101. 对称二叉树

 

首先想清楚,判断对称二叉树要比较的是哪两个节点,要比较的可不是左右节点!

对于二叉树是否对称,要比较的是根节点的左子树与右子树是不是相互翻转的,理解这一点就知道了其实我们要比较的是两个树(这两个树是根节点的左右子树),所以在递归遍历的过程中,也是要同时遍历两棵树。

这个题的核心就是在遍历的同时遍历两棵树!

本题遍历只能是“后序遍历”,因为我们要通过递归函数的返回值来判断两个子树的内侧节点和外侧节点是否相等。

正是因为要遍历两棵树而且要比较内侧和外侧节点,所以准确的来说是一个树的遍历顺序是左右中,一个树的遍历顺序是右左中。

var isSymmetric = function(root) {
    // 使用递归遍历左右子树 递归三部曲
    // 1. 确定递归的参数 root.left root.right和返回值true false 
    const compareNode = function(left, right) {
        // 2. 确定终止条件 空的情况
        if(left === null && right !== null || left !== null && right === null) {
            return false;
        } else if(left === null && right === null) {
            return true;
        } else if(left.val !== right.val) {
            return false;
        }
        // 3. 确定单层递归逻辑
        let outSide = compareNode(left.left, right.right);
        let inSide = compareNode(left.right, right.left);
        return outSide && inSide;
    }
    if(root === null) {
        return true;
    }
    return compareNode(root.left, root.right);
};

 

 

104.二叉树的最大深度

力扣题目链接(opens new window)

给定一个二叉树,找出其最大深度。

二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。

说明: 叶子节点是指没有子节点的节点。

示例: 给定二叉树 [3,9,20,null,null,15,7],

104. 二叉树的最大深度

返回它的最大深度 3 。

 这道题我能想到的第一步就是递归,遍历到最底层;

这道题的递归思想是这样的:我们分别递归左右子树的最大深度,并且在递归过程中不断取他们的最大值,最后加上根节点就能得到最大深度了。

代码如下:

var maxdepth = function(root) {
    //使用递归的方法 递归三部曲
    //1. 确定递归函数的参数和返回值
    const getdepth = function(node) {
    //2. 确定终止条件
        if(node === null) {
            return 0;
        }
    //3. 确定单层逻辑
        let leftdepth = getdepth(node.left);
        let rightdepth = getdepth(node.right);
        let depth = 1 + Math.max(leftdepth, rightdepth);
        return depth;
    }
    return getdepth(root);
};

 

559.n叉树的最大深度

力扣题目链接(opens new window)

给定一个 n 叉树,找到其最大深度。

最大深度是指从根节点到最远叶子节点的最长路径上的节点总数。

例如,给定一个 3叉树 :

559.n叉树的最大深度

我们应返回其最大深度,3。

和上一道题的思路一样,原本是左右节点,现在我们要从左到右依次遍历子节点。

代码如下


 

111.二叉树的最小深度

力扣题目链接(opens new window)

给定一个二叉树,找出其最小深度。

最小深度是从根节点到最近叶子节点的最短路径上的节点数量。

说明: 叶子节点是指没有子节点的节点。

示例:

给定二叉树 [3,9,20,null,null,15,7],

111.二叉树的最小深度1

返回它的最小深度 2.

这道题我们要注意,左右孩子都为空的时候才算是叶子节点。

var minDepth1 = function(root) {
    if(!root) return 0;
    // 到叶子节点 返回 1
    if(!root.left && !root.right) return 1;
    // 只有右节点时 递归右节点
    if(!root.left) return 1 + minDepth(root.right);
    // 只有左节点时 递归左节点
    if(!root.right) return 1 + minDepth(root.left);
    return Math.min(minDepth(root.left), minDepth(root.right)) + 1;
};

 

222.完全二叉树的节点个数

力扣题目链接(opens new window)

给出一个完全二叉树,求出该树的节点个数。

示例 1:

  • 输入:root = [1,2,3,4,5,6]
  • 输出:6

示例 2:

  • 输入:root = []
  • 输出:0

示例 3:

  • 输入:root = [1]
  • 输出:1

提示:

  • 树中节点的数目范围是[0, 5 * 10^4]
  • 0 <= Node.val <= 5 * 10^4
  • 题目数据保证输入的树是 完全二叉树

 这道题的前提是完全二叉树,我们在遍历的时候它肯定会有左右节点知道遍历到叶节点。

代码如下:


110.平衡二叉树

力扣题目链接(opens new window)

给定一个二叉树,判断它是否是高度平衡的二叉树。

本题中,一棵高度平衡二叉树定义为:一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过1。

示例 1:

给定二叉树 [3,9,20,null,null,15,7]

110.平衡二叉树

返回 true 。

示例 2:

给定二叉树 [1,2,2,3,3,null,null,4,4]

110.平衡二叉树1

返回 false 。

 

1.明确递归函数的参数和返回值

参数:当前传入节点。 返回值:以当前传入节点为根节点的树的高度。

那么如何标记左右子树是否差值大于1呢?

如果当前传入节点为根节点的二叉树已经不是二叉平衡树了,还返回高度的话就没有意义了。

所以如果已经不是二叉平衡树了,可以返回-1 来标记已经不符合平衡树的规则了。

2.明确终止条件

递归的过程中依然是遇到空节点了为终止,返回0,表示当前节点为根节点的树高度为0

3.明确单层递归的逻辑

如何判断以当前传入节点为根节点的二叉树是否是平衡二叉树呢?当然是其左子树高度和其右子树高度的差值。

分别求出其左右子树的高度,然后如果差值小于等于1,则返回当前二叉树的高度,否则返回-1,表示已经不是二叉平衡树了。


257. 二叉树的所有路径

力扣题目链接(opens new window)

给定一个二叉树,返回所有从根节点到叶子节点的路径。

说明: 叶子节点是指没有子节点的节点。

示例: 

257.二叉树的所有路径1

这道题目要求从根节点到叶子的路径,所以需要前序遍历,这样才方便让父节点指向孩子节点,找到对应的路径。

在这道题目中将第一次涉及到回溯,因为我们要把路径记录下来,需要回溯来回退一个路径再进入另一个路径。

 


 涉及到回溯了,等鼠鼠学了再来详细解释。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2314872.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Qt/C++音视频开发82-系统音量值获取和设置/音量大小/静音

一、前言 在音视频开发中&#xff0c;音量的控制分两块&#xff0c;一个是控制播放器本身的音量&#xff0c;绝大部分场景都是需要控制这个&#xff0c;这个不会影响系统音量的设置。还有一种场景是需要控制系统的音量&#xff0c;因为播放器本身的音量是在系统音量的基础上控…

从零到精通文本指令:打造个人AI助理的完整指令库(Prompt 指令实操)

文章目录 从零到精通文本指令&#xff1a;打造个人AI助理的完整指令库(Prompt 指令实操)创作指令创作指令**润色指令****扩写指令** 问答指令直接问答材料问答时间逻辑问答 总结、摘要、翻译指令总结信息抽取翻译 从零到精通文本指令&#xff1a;打造个人AI助理的完整指令库(Pr…

C# NX二次开发:获取模型中所有的草图并获取草图中的对象

大家好&#xff0c;今天接着讲NX二次开发获取草图相关。 获取草图的方法是从workPart中获取&#xff0c;如下面的例子所示&#xff1a; List<Tag> tags new List<Tag>(); SketchCollection sketchCollection workPart.Sketches; …

基于SpringBoot和MybatisPlus实现通用Controller

基于SpringBoot和MybatisPlus实现通用Controller&#xff0c;只需要创建实体类和mapper接口&#xff0c;单表增删改查接口就已经实现&#xff0c;提升开发效率 1.定义通用controller package com.xian.controller;import cn.hutool.core.map.MapUtil; import com.baomidou.my…

锤头线和倒锤头线

1、锤头线 是指一根没有上影线或上影线很短,而下影线很长,实体却很小的K线。其K线实体可以是阴线或是阳线,类似于T字。 锤头线的特征有以下三点: 实体很小,下影线长度大于或等于实体的两倍。下影线越长时,如股价处于低位,则上涨的可能性越大。 如股价处于高位,则下跌…

蓝桥杯嵌入式组第十二届省赛题目解析+STM32G431RBT6实现源码

文章目录 1.题目解析1.1 分而治之&#xff0c;藕断丝连1.2 模块化思维导图1.3 模块解析1.3.1 KEY模块1.3.2 LED模块1.3.3 LCD模块1.3.4 TIM模块1.3.5 UART模块1.3.5.1 uart数据解析 2.源码3.第十二届题目 前言&#xff1a;STM32G431RBT6实现嵌入式组第十二届题目解析源码&#…

STM32上实现简化版的AUTOSAR DEM模块

文章目录 摘要摘要 在一些可以不使用AUTOSAR的项目中,往往也有故障检测和DTC存储的需求,开发一套类似于AUTOSAR DEM模块的软件代码,能够满足DTC的检出和存储,使用FalshDB代替Nvm模块,轻松构建持久化存储,如果你也有这样的需求,请阅读本篇,希望能够帮到你。 /*********…

如何用终端运行一个SpringBoot项目

在项目开发阶段&#xff0c;为了能够快速测试一个SpringBoot项目的执行结果&#xff0c;就可以采用终端&#xff08;黑窗&#xff09;运行查看&#xff0c;因为我们不能要求每一个客户都安装idea并且适配我们的项目版本。 下面将展示打包运行这两个方面的过程&#xff1a; 创建…

多线程与并发编程 面试专题

多线程与并发编程 面试专题 线程的基础概念基础概念线程的创建线程的状态线程的终止方式start 与 run 区别线程的常用方法 锁锁的分类深入synchronized深入ReentrantLock死锁问题 阻塞队列线程池 线程的基础概念 基础概念 进程与线程 进程&#xff1a;指运行中的程序。 比如我…

米尔电子-LR3568-烧录鸿蒙

最近开始搞鸿蒙&#xff0c;用的是米尔的LR3568。 开贴记录。 首先要在LR3568上烧录鸿蒙 一、安装准备 1.从米尔电子上下载资料 网址:米尔开发者中心 注册完成后&#xff0c;进入页面&#xff0c;选择我的产品&#xff0c;添加PN和SN PN和SN可以在包装盒上找到 添加到这里…

基于Flink SQL的实时指标多维分析模型

数据流程介绍 1.创建源表kafka接入消息队列数据&#xff0c;定义字段映射规则&#xff1b; 2.创建目标表es_sink配置Elasticsearch输出&#xff1b; 3.通过多级视图&#xff08;tmp→tmp_dedup→tmp1/tmp2→tmp3→tmp_groupby&#xff09;实现数据清洗、去重、状态计算&#x…

【从零开始学习计算机科学】数据库系统(二)关系数据库 与 关系代数

【从零开始学习计算机科学】数据库系统(二)关系数据库 与 关系代数 关系数据库结构化查询语言SQL数据定义语言(DDL)数据查询语言(Data Query Language, DQL)数据操纵语言(Data Manipulation Language, DML)数据控制语言(Data Control Language, DCL)关系型数据库的优…

Linux驱动开发实战(四):设备树点RGB灯

Linux驱动开发实战&#xff08;四&#xff09;&#xff1a;设备树点RGB灯 文章目录 Linux驱动开发实战&#xff08;四&#xff09;&#xff1a;设备树点RGB灯前言一、驱动实现1.1 驱动设计思路1.2 关键数据结构1.3 字符设备操作函数1.4 平台驱动探测函数1.5 匹配表和平台驱动结…

vue中,watch里,this为undefined的两种解决办法

提示&#xff1a;vue中&#xff0c;watch里&#xff0c;this为undefined的两种解决办法 文章目录 [TOC](文章目录) 前言一、问题二、方法1——使用function函数代替箭头函数()>{}三、方法2——使用that总结 前言 ‌‌‌‌‌尽量使用方法1——使用function函数代替箭头函数()…

设计模式C++

针对一些经典的常见的场景, 给定了一些对应的解决方案&#xff0c;这个就叫设计模式。 设计模式的作用&#xff1a;使代码的可重用性高&#xff0c;可读性强&#xff0c;灵活性好&#xff0c;可维护性强。 设计原则&#xff1a; 单一职责原则&#xff1a;一个类只做一方面的…

前端构建工具进化论:从Grunt到Turbopack的十年征程

前端构建工具进化论&#xff1a;从Grunt到Turbopack的十年征程 一、石器时代&#xff1a;任务自动化工具&#xff08;2012-2014&#xff09; 1.1 Grunt&#xff1a;首个主流构建工具 // Gruntfile.js 典型配置 module.exports function(grunt) {grunt.initConfig({concat: {…

设备预测性维护:企业降本增效的关键密码​

在当今竞争激烈的商业战场中&#xff0c;企业犹如一艘在波涛汹涌大海上航行的巨轮&#xff0c;要想乘风破浪、稳步前行&#xff0c;降本增效便是那至关重要的 “船锚”&#xff0c;帮助企业在复杂的市场环境中站稳脚跟。而设备预测性维护&#xff0c;正是开启企业降本增效大门的…

css基本功

为什么 ::first-letter 是伪元素&#xff1f; ::first-letter 的作用是选择并样式化元素的第一个字母&#xff0c;它创建了一个虚拟的元素来包裹这个字母&#xff0c;因此属于伪元素。 grid布局 案例一 <!DOCTYPE html> <html lang"zh-CN"><head&…

信号处理抽取多项滤波的数学推导与仿真

昨天的《信号处理之插值、抽取与多项滤波》&#xff0c;已经介绍了插值抽取的多项滤率&#xff0c;今天详细介绍多项滤波的数学推导&#xff0c;并附上实战仿真代码。 一、数学变换推导 1. 多相分解的核心思想 将FIR滤波器的系数 h ( n ) h(n) h(n)按相位分组&#xff0c;每…

C++双端队列知识点+习题

在C中&#xff0c;双端队列&#xff08;Deque&#xff0c;发音为“deck”&#xff09;是标准模板库&#xff08;STL&#xff09;中的一种容器适配器&#xff0c;其全称为Double-Ended Queue。它结合了队列和栈的特点&#xff0c;允许在容器的两端&#xff08;前端和后端&#x…