【无人机路径规划】基于麻雀搜索算法(SSA)的无人机路径规划(Matlab)

news2025/4/21 21:30:56

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

代码获取私信博主基于麻雀搜索算法(SSA)的无人机路径规划(Matlab)


一、算法背景与核心思想

麻雀搜索算法(Sparrow Search Algorithm, SSA)是一种受麻雀群体觅食行为启发的元启发式算法,通过模拟麻雀在觅食过程中"发现者-跟随者-警戒者"的协作机制,实现全局寻优与局部开发的平衡。其核心特点包括:

  1. 发现者角色:负责探索高收益区域,引导群体向更优方向移动;
  2. 跟随者角色:围绕发现者进行局部精细化搜索;
  3. 警戒者角色:随机移动以避免陷入局部最优;
  4. 自适应权重:动态调整探索与开发的比例,提升收敛速度。

在无人机路径规划中,SSA通过模拟上述行为优化三维空间中的航迹,满足避障约束的同时最小化飞行距离。


二、系统实现框架

1. 地形数据处理模块
  • 输入数据格式:支持数字高程模型(DEM)、点云数据或三维网格地图(如.obj格式);
  • 数据预处理
    • 地形网格化:将连续空间离散化为三维栅格(分辨率可调);
    • 障碍物标记:根据高程阈值或预设区域标识禁飞区;
    • 坐标归一化:将实际地理坐标转换为算法处理的归一化值(如0-1范围);
  • 可视化接口:实时渲染三维地形与障碍物分布。
2. 路径编码与初始化
  • 路径表示:采用分段线性路径编码,路径点序列为 P = { p 1 , p 2 , . . . , p n } P=\{p_1,p_2,...,p_n\} P={p1,p2,...,pn},其中 p i = ( x i , y i , z i ) p_i=(x_i,y_i,z_i) pi=(xi,yi,zi)
  • 初始种群生成
    • 随机生成连接起点与终点的折线路径;
    • 加入高度扰动确保路径不穿透地面;
    • 种群规模 N = 50 ∼ 200 N=50\sim200 N=50200(可配置参数)。
3. 目标函数设计

目标函数需同时优化路径长度与避障性能:

目标函数形式

F t o t a l = w 1 ⋅ F l e n g t h + w 2 ⋅ F h e i g h t + w 3 ⋅ F s m o o t h F_{total} = w_1 \cdot F_{length} + w_2 \cdot F_{height} + w_3 \cdot F_{smooth} Ftotal=w1Flength+w2Fheight+w3Fsmooth
其中:

  • (w_1 + w_2 + w_3 = 1),权重分配需根据任务需求动态调整
  • 各子项均需进行归一化处理以消除量纲差异

1. 飞行路径长度项

目标:最小化总飞行距离以降低能耗与时间成本
计算公式
F l e n g t h = ∑ i = 1 n − 1 ∥ p i + 1 − p i ∥ F_{length} = \sum_{i=1}^{n-1} \| p_{i+1} - p_i \| Flength=i=1n1pi+1pi
其中 (p_i = (x_i, y_i, z_i)) 为路径点坐标,(| \cdot |) 表示欧氏距离。

2. 飞行高度代价项

目标:平衡隐蔽性(低空飞行)与安全性(避免触地)
计算公式
F h e i g h t = α ⋅ ∑ i = 1 n ( z i − z r e f ) 2 + β ⋅ ∑ i = 2 n ∣ z i − z i − 1 ∣ F_{height} = \alpha \cdot \sum_{i=1}^n (z_i - z_{ref})^2 + \beta \cdot \sum_{i=2}^n |z_i - z_{i-1}| Fheight=αi=1n(zizref)2+βi=2nzizi1

  • 高度跟踪项((\alpha)项):惩罚与参考高度 (z_{ref}) 的偏差
  • 高度变化率项((\beta)项):抑制频繁爬升/下降
3. 路径平滑度项(J_smooth)

目标:确保路径满足无人机机动性约束(飞行偏转角)
计算公式(基于曲率最小化):
F s m o o t h = ∑ i = 2 n − 1 ∥ p i + 1 − 2 p i + p i − 1 ∥ 2 ∥ p i + 1 − p i ∥ ⋅ ∥ p i − p i − 1 ∥ F_{smooth} = \sum_{i=2}^{n-1} \frac{\| p_{i+1} - 2p_i + p_{i-1} \|^2}{\| p_{i+1} - p_i \| \cdot \| p_i - p_{i-1} \|} Fsmooth=i=2n1pi+1pipipi1pi+12pi+pi12
物理意义

  • 分子:路径点二阶差分(曲率平方)
  • 分母:路径段长度乘积(无量纲化处理)

约束条件
κ m a x ≤ v 2 g ⋅ tan ⁡ ( ϕ m a x ) \kappa_{max} \leq \frac{v^2}{g \cdot \tan(\phi_{max})} κmaxgtan(ϕmax)v2

  • (\kappa_{max}):最大允许曲率
  • (\phi_{max}):无人机最大滚转角
4. 部分代码

function [r1, r2] = gnR1R2(NP1, NP2, r0)

% gnA1A2 generate two column vectors r1 and r2 of size NP1 & NP2, respectively
%    r1's elements are choosen from {1, 2, ..., NP1} & r1(i) ~= r0(i)
%    r2's elements are choosen from {1, 2, ..., NP2} & r2(i) ~= r1(i) & r2(i) ~= r0(i)
%
% Call:
%    [r1 r2 ...] = gnA1A2(NP1)   % r0 is set to be (1:NP1)'
%    [r1 r2 ...] = gnA1A2(NP1, r0) % r0 should be of length NP1
%
% Version: 2.1  Date: 2008/07/01
% Written by Jingqiao Zhang (jingqiao@gmail.com)

NP0 = length(r0);

r1 = floor(rand(1, NP0) * NP1) + 1;
%for i = 1 : inf
for i = 1 : 99999999
    pos = (r1 == r0);
    if sum(pos) == 0
        break;
    else % regenerate r1 if it is equal to r0
        r1(pos) = floor(rand(1, sum(pos)) * NP1) + 1;
    end
    if i > 1000, % this has never happened so far
        error('Can not genrate r1 in 1000 iterations');
    end
end

r2 = floor(rand(1, NP0) * NP2) + 1;
%for i = 1 : inf
for i = 1 : 99999999
    pos = ((r2 == r1) | (r2 == r0));
    if sum(pos)==0
        break;
    else % regenerate r2 if it is equal to r0 or r1
        r2(pos) = floor(rand(1, sum(pos)) * NP2) + 1;
    end
    if i > 1000, % this has never happened so far
        error('Can not genrate r2 in 1000 iterations');
    end
end

5. 约束处理策略
  • 硬约束:直接拒绝穿透障碍物的路径(通过碰撞检测);
  • 软约束:对接近障碍物的路径施加指数型惩罚;
  • 动态调整:迭代后期逐步收紧安全距离约束。

三、关键实现细节

1. 路径处理
  • 曲率约束:确保路径满足无人机最大转弯角限制;
  • 高度连续性:加入z方向的二阶导数惩罚项。
2. 算法参数配置
参数取值范围说明
种群规模50-200复杂度与精度的权衡
最大迭代次数100-500根据地形复杂度调整
发现者比例20%-40%控制全局探索能力
警戒阈值0.1-0.3影响跳出局部最优的概率

四、可视化与结果分析

1. 迭代收敛曲线
  • 绘制目标函数值随迭代次数的变化曲线;
2. 三维路径可视化
  • 使用透明度渲染区分可行区域与障碍物;
  • 添加等高线投影增强地形辨识度。
3. 二维平面投影分析
  • XY平面投影:展示路径绕障的水平机动;
  • XZ/YZ剖面:分析高度变化与地形匹配度;
  • 热力图叠加:显示路径点分布密度。

五、工程实践建议

  1. 实时性优化:采用滚动时域优化(RHC)应对动态环境;
  2. 硬件加速:部署FPGA实现SSA的并行计算;
  3. 不确定性处理:加入鲁棒性项应对定位误差;
  4. 多机协同:扩展为多目标SSA实现集群路径规划。

六、应用场景拓展

  1. 灾害救援:在复杂山地环境中规划物资投送路径;
  2. 电力巡检:自动规避高压线塔等障碍物;
  3. 农业植保:实现三维地块的全覆盖路径规划;
  4. 城市物流:符合低空管制规则的多约束路径生成。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2314612.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

STM32_GPIO系统外设学习

按照STM32MCUWIKI、参考手册的外设介绍----->CubeF4的软件包中相关的Exmple代码----->CubeMX设置截图加深理解记忆 资料链接:嵌入式开发_硬软件的环境搭建 我的飞书文档-GPIO篇 如果觉得内容不错,欢迎给我的飞书文档点赞。同时如果有什么意见或…

【操作系统安全】任务1:操作系统部署

目录 一、VMware Workstation Pro 17 部署 二、VMware Workstation 联网方式 三、VMware 虚拟机安装流程 四、操作系统介绍 五、Kali 操作系统安装 六、Windows 系统安装 七、Windows 系统网络配置 八、Linux 网络配置 CSDN 原创主页:不羁https://blog.csd…

下载安装启动 VMware 个人免费版本

一、进入官网并登录账号下载软件 进入官网 [ https://www.vmware.com ],点击Products,将页面划到最底下,点击 “SEE DESKTOP HYPERVISORS”按钮。 然后点击 Desktop hypevisor ,会出现如下界面,可以根据自己的操作系…

C#+AForge 实现视频录制

C#AForge 实现视频录制 ​ 在C#中,使用AForge 库实现视频录制功能是一个比较直接的过程。AForge 是一个开源的.NET框架,提供了许多用于处理图像和视频的类库。 开发步骤 安装AForge库 ​ 首先,确保你的项目中已经安装了 AForge.Video和AFo…

SAP SD学习笔记31 - 销售BOM

上一篇讲 前受金处理(预付款处理)。 SAP SD学习笔记29 - 前受金处理(预收款处理)_fplt 付款申请与sd 数据表的关联关系-CSDN博客 本章继续讲SAP SD模块的其他知识:销售BOM。 销售BOM在现场还是会用到的。 目录 1,销售BOM概要 2,受注BOM的…

大数据学习(63)- Zookeeper详解

&&大数据学习&& 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言📝支持一下博主哦🤞 &#x1f…

嵌入式八股C语言---面向对象篇

面向对象与面向过程 面向过程 就是把整个业务逻辑分成多个步骤,每步或每一个功能都可以使用一个函数来实现面向对象 对象是类的实例化,此时一个类就内部有属性和相应的方法 封装 在C语言里实现封装就是实现一个结构体,里面包括的成员变量和函数指针,然后在构造函数中,为结构体…

C# ListView设置标题头背景颜色和字体颜色

一、向ListView 添加数据 for (int i 1; i < 5; i) {ListViewItem litem new ListViewItem("data:"i);lv_WarnList.Items.Add(litem); }如果需要在ListView中绑定实体类对象的话&#xff0c;需要将数据放在Tag属性里 for (int i 1; i < 5; i) {AngleData …

嵌入式 ARM Linux 系统构成(6):应用层(Application Layer)

目录 一、应用层概述 二、应用层的核心组成 2.1 主应用程序&#xff08;Main Applications&#xff09; 2.2 系统服务&#xff08;System Services&#xff09; 2.3 用户界面&#xff08;User Interface&#xff09; 2.4 脚本与自动化工具 2.5 第三方库与框架 2.6 通信…

【HTML】一、基础标签

文章目录 1、开发环境准备2、html介绍3、html基本骨架4、标签的关系5、常用标签5.1 标题5.2 段落5.3 换行与水平线5.4 文本格式化标签5.5 图像标签5.6 超链接标签5.7 音频标签5.8 视频标签 6、路径7、网页制作 1、开发环境准备 在编辑器中写代码&#xff0c;在浏览器中看效果 …

centos7通过yum安装redis

centos7通过yum安装redis 1.安装redis数据库 yum install -y redis2.启动redis服务 systemctl start redis3.查看redis状态 systemctl status redis4、停止服务 systemctl stop redis5、重启服务 systemctl restart redis6、查看redis进程 ps -ef | grep redis7、开放端…

AutoMQ x OSS 的 Iceberg 数据入湖的最佳实践

背景 在数字化转型进程中&#xff0c;用户交互行为产生的多维度数据已成为企业的重要战略资产。以短视频平台为例&#xff0c;基于用户点赞事件的实时推荐算法能显著提升用户活跃度和平台粘性。这类实时数据主要通过 Apache Kafka 流处理平台进行传输&#xff0c;通过其扇出&a…

【Help Manual】导出PDF中英文不在一行解决方案

在使用Help Manual 的时候&#xff0c;会出现导出PDF时&#xff0c;中英文在同一行出现水平不对齐的问题。如下&#xff1a; 解决方案&#xff1a; 结果如下&#xff1a;

Scala编程_实现Rational的基本操作

在Scala中实现一个简单的有理数&#xff08;Rational&#xff09;类&#xff0c;并对其进行加法、比较等基本操作. 有理数的定义 有理数是可以表示为两个整数的比值的数&#xff0c;通常形式为 n / d&#xff0c;其中 n 是分子&#xff0c;d 是分母。为了确保我们的有理数始终…

用python和Pygame库实现“跳过障碍”游戏

用python和Pygame库实现“跳过障碍”游戏 游戏开发 跳过障碍游戏流程说明&#xff1a; 启动游戏后显示开始界面&#xff08;包含游戏说明&#xff09; 按空格键进入游戏 游戏过程中躲避障碍物获取分数 碰撞后显示结束界面&#xff08;包含最终得分&#xff09; 按空格键…

SqlServer数据库报错紧急或可疑无法访问的修复过程,亲测有效。

当 SQL Server 数据库被标记为 SUSPECT 状态时&#xff0c;表示数据库可能由于事务日志损坏、数据文件丢失或其他严重问题而无法正常启动。以下是一个详细的恢复步骤&#xff0c;基于搜索结果中的信息和常见的最佳实践&#xff1a; 恢复步骤 1. 确认数据库状态 将database-n…

【python-uiautomator2】手机上的ATX应用界面报错问题处理:无法提供服务,非am instrument启动

目录 一、前期准备 1.1 插入设备 1.2 安装atx-agent 二、解决报错&#xff1a;无法提供服务&#xff0c;非am instrument启动 2.1 出现报错 2.2 尝试解决 2.3 最终解决 三、开启ATX的悬浮窗权限 一、前期准备 1.1 插入设备 本地插入待执行设备&#xff0c;待执行设备…

子母钟系统,京准电子科技助力高考精准计时

子母钟系统&#xff0c;京准电子科技助力高考精准计时 子母钟系统&#xff0c;京准电子科技助力高考精准计时 【摘要】子母钟系统又叫网络时钟系统是校园网络中一个重要的精准计时系统&#xff0c;随着网络的普及&#xff0c;许多校园都建了自己的校园专网&#xff0c;使用的…

深度解析:主流大模型与智能体框架能力对比及实战指南

前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站。https://www.captainbed.cn/north 文章目录 一、技术演进全景图二、主流大模型能力矩阵1. 闭源模型对比2. 开源模型对比 三、智能体框架深…

Linux中的基本指令(下)

目录 mv指令 more指令 less指令 head指令 tail 指令 继续理解文件 重定向和追加重定向操作 理解管道 find指令 whereis 指令 bc指令 uname ‒r指令 grep 指令 关机 扩展命令 zip/unzip 指令 tar指令 关于rzsz 系统间的文件互传 接上&#xff01; mv指令 m…