Java虚拟机之垃圾收集(一)

news2025/3/12 2:52:23

目录

一、如何判定对象“生死”?

1. 引用计数算法(理论参考)

2. 可达性分析算法(JVM 实际使用)

3. 对象的“缓刑”机制

二、引用类型与回收策略

三、何时触发垃圾回收?

1. 分代回收策略

2. 手动触发与注意事项

四、垃圾回收算法与实现

1. 基础算法对比

2. 分代收集理论

3. 新生代回收:Apple式复制算法

五、主流垃圾收集器详解

1. CMS 收集器(低停顿优先)

2. G1 收集器(平衡吞吐与延迟)

3. 收集器对比

六、调优建议与工具推荐

1. 参数配置示例

2. 常见问题排查

3. 工具推荐

七、总结


一、如何判定对象“生死”?

垃圾收集(GC)的核心是识别无用对象。JVM 通过两种算法判断对象是否存活:

1. 引用计数算法(理论参考)

  • 原理
    每个对象维护一个引用计数器,被引用时计数器 +1,引用失效时 -1。计数器为 0 时判定为可回收。

  • 缺点
    无法解决循环引用问题(如对象 A 引用 B,B 也引用 A)。

  • Java 未采用:主流 JVM 均使用 可达性分析算法

2. 可达性分析算法(JVM 实际使用)

  • 原理
    从 GC Roots 出发,遍历对象引用链。若对象无法被 GC Roots 关联,则判定为可回收。

  • GC Roots 对象类型

    • 虚拟机栈中的局部变量(如方法参数、局部变量)。

    • 方法区中静态变量引用的对象。

    • 方法区中常量引用的对象(如字符串常量池)。

    • 本地方法栈中 JNI 引用的对象(Native 方法)。

    • 同步锁持有的对象(synchronized 锁对象)。

    • Java 虚拟机内部对象(如系统类加载器、异常对象)。

3. 对象的“缓刑”机制

  • finalize() 方法
    若对象重写 finalize() 且未被调用过,JVM 会将其放入 F-Queue,由 Finalizer 线程触发该方法。

  • 逃脱机会
    在 finalize() 中重新建立与 GC Roots 的引用链,可避免被回收(仅一次)。

public class RescueObject {
    public static RescueObject hook;

    @Override
    protected void finalize() throws Throwable {
        super.finalize();
        hook = this; // 在 finalize 中自我拯救
    }
}

二、引用类型与回收策略

Java 提供 四种引用类型,控制对象生命周期与回收优先级:

引用类型特点回收时机典型场景
强引用Object obj = new Object(),默认引用类型对象不可达时回收普通对象创建
软引用SoftReference<Object> ref = new SoftReference<>(obj)内存不足时回收(OOM 前触发)缓存(如图片缓存)
弱引用WeakReference<Object> ref = new WeakReference<>(obj)下一次 GC 时回收临时缓存(如 WeakHashMap)
虚引用PhantomReference<Object> ref = new PhantomReference<>(obj, queue)随时可能回收,需配合 ReferenceQueue 使用堆外内存回收监听(如 DirectByteBuffer)

三、何时触发垃圾回收?

GC 触发时机由 内存区域分配策略 和 JVM 配置参数 共同决定:

1. 分代回收策略

区域GC 类型触发条件
新生代Minor GCEden 区空间不足
老年代Major GC老年代空间不足(通常伴随 Full GC)
整堆Full GC方法区不足、老年代空间不足、手动调用 System.gc()

2. 手动触发与注意事项

  • System.gc():建议 JVM 触发 Full GC(不保证立即执行)。

  • 风险:频繁 Full GC 会导致应用停顿(Stop-The-World),需谨慎使用。


四、垃圾回收算法与实现

1. 基础算法对比

算法步骤优点缺点适用场景
标记-清除标记存活对象 → 清除未标记对象简单内存碎片化老年代(CMS)
复制算法存活对象复制到新区域 → 清空原区域无碎片,高效内存利用率 50%新生代(Survivor)
标记-整理标记存活对象 → 整理到内存一端无碎片化整理耗时老年代(Serial Old)

2. 分代收集理论

  • 弱分代假说:绝大多数对象朝生夕灭(新生代)。

  • 强分代假说:熬过多次 GC 的对象难以消亡(老年代)。

  • 分代设计

    • 新生代:使用复制算法(Eden + Survivor)。

    • 老年代:使用标记-清除或标记-整理算法。

3. 新生代回收:Apple式复制算法

  • 内存划分

    • Eden : Survivor1 : Survivor2 = 8:1:1(默认)。

  • 回收流程

    1. 新对象分配至 Eden 区。

    2. Eden 满时触发 Minor GC,存活对象复制到 Survivor1。

    3. 下次 Minor GC 时,Eden 和 Survivor1 存活对象复制到 Survivor2,并清空原区域。

    4. 对象年龄达到阈值(默认 15)后晋升老年代。


五、主流垃圾收集器详解

1. CMS 收集器(低停顿优先)

  • 目标:最小化应用停顿时间。

  • 算法:标记-清除。

  • 工作流程

    1. 初始标记(STW):标记 GC Roots 直接关联对象。

    2. 并发标记:遍历对象图(与用户线程并发)。

    3. 重新标记(STW):修正并发标记期间变动的引用。

    4. 并发清除:清理垃圾(与用户线程并发)。

  • 缺点

    • 内存碎片化(需定期 Full GC 整理)。

    • 并发阶段占用 CPU 资源。

2. G1 收集器(平衡吞吐与延迟)

  • 目标:可预测的停顿时间(如 200ms 内)。

  • 内存布局:将堆划分为多个 Region(默认 2048 个)。

  • 工作流程

    1. 初始标记(STW):标记 GC Roots 直接关联对象。

    2. 并发标记:遍历对象图(与用户线程并发)。

    3. 最终标记(STW):处理剩余引用变更。

    4. 筛选回收(STW):选择性价比高的 Region 回收。

  • 优势

    • 支持大内存(TB 级)。

    • 通过 Region 划分减少碎片化。

3. 收集器对比

收集器算法区域特点适用场景
CMS标记-清除老年代低停顿,但碎片化严重响应敏感型应用
G1标记-整理全堆可预测停顿,兼顾吞吐与延迟大内存、低延迟应用

六、调优建议与工具推荐

1. 参数配置示例

# 使用 G1 收集器,堆内存 4G,目标停顿 200ms
java -Xmx4G -Xms4G -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -jar app.jar

# 启用 CMS 收集器
-XX:+UseConcMarkSweepGC -XX:+CMSIncrementalMode

2. 常见问题排查

  • 频繁 Full GC

    • 检查内存泄漏(如静态集合未清理)。

    • 调整新生代与老年代比例(-XX:NewRatio)。

  • 长时间 STW

    • 切换低延迟收集器(如 G1/ZGC)。

    • 减少堆内存大小(权衡吞吐与停顿)。

3. 工具推荐

  • 监控工具:VisualVM、JConsole、Prometheus + Grafana。

  • 日志分析:GCeasy、GCViewer。

  • 诊断工具:Arthas、MAT(Memory Analyzer Tool)。


七、总结

  • 生死判定:可达性分析是核心,finalize() 是最后的逃生机会。

  • 引用分级:软、弱引用优化内存敏感场景。

  • 算法选择:分代理论平衡效率与资源利用率。

  • 收集器选型:CMS 适合低延迟,G1 适合大内存与可预测停顿。

核心原则:结合业务需求与监控数据动态调优,避免盲目配置。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2313513.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

⭐LeetCode(数学分类) 48. 旋转图像——优美的数学法转圈(原地修改)⭐

⭐LeetCode(数学分类) 48. 旋转图像——优美的数学法转圈(原地修改)⭐ 示例 1&#xff1a; 输入&#xff1a;root [5,3,6,2,4,null,8,1,null,null,null,7,9] 输出&#xff1a;[1,null,2,null,3,null,4,null,5,null,6,null,7,null,8,null,9] 示例 2&#xff1a; 输入&#xff1…

深度学习PyTorch之13种模型精度评估公式及调用方法

深度学习pytorch之22种损失函数数学公式和代码定义 深度学习pytorch之19种优化算法&#xff08;optimizer&#xff09;解析 深度学习pytorch之4种归一化方法&#xff08;Normalization&#xff09;原理公式解析和参数使用 深度学习pytorch之简单方法自定义9类卷积即插即用 实时…

tomcat单机多实例部署

一、部署方法 多实例可以运行多个不同的应用&#xff0c;也可以运行相同的应用&#xff0c;类似于虚拟主机&#xff0c;但是他可以做负载均衡。 方式一&#xff1a; 把tomcat的主目录挨个复制&#xff0c;然后把每台主机的端口给改掉就行了。 优点是最简单最直接&#xff0c;…

Java开发者如何接入并使用DeepSeek

目录 一、准备工作 二、添加DeepSeek SDK依赖 三、初始化DeepSeek客户端 四、数据上传与查询 五、数据处理与分析 六、实际应用案例 七、总结 【博主推荐】&#xff1a;最近发现了一个超棒的人工智能学习网站&#xff0c;内容通俗易懂&#xff0c;风格风趣幽默&#xff…

win10电脑鼠标速度突然变的很慢?

电脑鼠标突然变很慢&#xff0c;杀毒检测后没问题&#xff0c;鼠标设置也没变&#xff0c;最后发现可能是误触鼠标的“DPI”调节键。 DPI调节键在鼠标滚轮下方&#xff0c;再次点击即可恢复正常鼠标速度。 如果有和-的按键&#xff0c;速度变快&#xff0c;-速度变慢。 图源&…

第四次CCF-CSP认证(含C++源码)

第四次CCF-CSP认证 第一道&#xff08;easy&#xff09;思路及AC代码 第二道&#xff08;easy&#xff09;思路及AC代码遇到的问题 第三道&#xff08;mid&#xff09;思路及AC代码 第一道&#xff08;easy&#xff09; 题目链接 思路及AC代码 这题就是将这个矩阵旋转之后输出…

Netty基础—1.网络编程基础一

大纲 1.什么是OSI开放系统互连 2.OSI七层模型各层的作用 3.TCP/IP协议的简介 4.TCP和UDP的简介 5.TCP连接的三次握手 6.TCP连接的四次挥手 7.TCP/IP中的数据包 8.TCP通过确认应答与序列号提高可靠性 9.HTTP请求的传输过程 10.HTTP协议报文结构 11.Socket、短连接、长…

98.在 Vue3 中使用 OpenLayers 根据 Resolution 的不同显示不同的地图

在 Vue3 中使用 OpenLayers 根据 Resolution 的不同显示不同的地图 前言 在 Web GIS&#xff08;地理信息系统&#xff09;应用开发中&#xff0c;地图的 Resolution&#xff08;分辨率&#xff09;是一个重要的概念。不同的 Resolution 适用于不同的地图层级&#xff0c;有时…

unity学习64,第3个小游戏:一个2D跑酷游戏

目录 学习参考 素材资源导入 1 创建项目 1.1 创建1个2D项目 1.2 导入素材 2 背景图bg 2.0 bg素材 2.1 创建背景 2.2 修改素材&#xff0c;且修改摄像机等 2.2.1 修改导入的原始prefab素材 2.2.2 对应调整摄像机 2.2.3 弄好背景 2.3 背景相关脚本实现 2.3.1 错误…

在本地部署DeepSeek等大模型时,需警惕的潜在安全风险

在本地部署DeepSeek等大模型时&#xff0c;尽管数据存储在本地环境&#xff08;而非云端&#xff09;&#xff0c;但仍需警惕以下潜在安全风险&#xff1a; 1. 模型与数据存储风险 未加密的存储介质&#xff1a;若训练数据、模型权重或日志以明文形式存储&#xff0c;可能被物…

【redis】string类型相关操作:SET、GET、MSET、MGET、SETNX、SETEX、PSETEX

文章目录 二进制存储编码转换SET 和 GETSETGET MSET 和 MGETSETNX、SETEX 和 PSETEX Redis 所有的 key 都是字符串&#xff0c;value 的类型是存在差异的 二进制存储 Redis 中的字符串&#xff0c;直接就是按照二进制数据的方式存储的 不仅仅可以存储文本数据&#xff0c;还可…

GaussDB安全配置指南:从认证到防御的全方面防护

一、引言 随着企业数据规模的扩大和云端化进程加速&#xff0c;数据库安全性成为运维的核心挑战之一。GaussDB作为一款高性能分布式数据库&#xff0c;提供了丰富的安全功能。本文将从 ​认证机制、权限控制、数据加密、审计日志​ 等维度&#xff0c;系统性地讲解如何加固 Ga…

Ubuntu20.04搭建gerrit code review

一、环境准备 1. 安装 Java 环境‌ Gerrit 依赖 Java 运行环境&#xff08;推荐 JDK 8&#xff09;&#xff1a; sudo apt install openjdk-11-jdk 验证安装&#xff1a; java -version ‌2. 安装 Git sudo apt install git ‌3. 可选依赖 数据库‌&#xff1a;Gerrit …

MacOS安装FFmpeg和FFprobe

按照网上很多教程安装&#xff0c;结果都失败了&#xff0c;后来才发现是路径问题&#xff0c;其实安装过程很简单&#xff08;无奈&#xff09; 第一步&#xff1a; 在官网下载 打开页面后&#xff0c;可以看到FFmpeg、FFprobe、FFplay和FFserver的下载图标 第二步&#xff1…

Redis7系列:设置开机自启

前面的文章讲了Redis和Redis Stack的安装&#xff0c;随着服务器的重启&#xff0c;导致Redis 客户端无法连接。原来的是Redis没有配置开机自启。此文记录一下如何配置开机自启。 1、修改配置文件 前面的Redis和Redis Stack的安装的文章中已经讲了redis.config的配置&#xf…

SpringAI介绍及本地模型使用方法

博客原文地址 前言 Spring在Java语言中一直稳居高位&#xff0c;与AI的洪流碰撞后也产生了一些有趣的”化学反应“&#xff0c;当然你要非要说碰撞属于物理反应也可以&#xff0c; 在经历了一系列复杂的反应方程后&#xff0c;Spring家族的新成员——SpringAI&#xff0c;就…

Unity 基础知识总结(持续更新中...)

引擎基础 Unity有哪几个主要窗口&#xff1f; Scene窗口 用于场景搭建和UI界面拼接 Game窗口 游戏运行预览 Hierarchy窗口 查看和调整场景对象层级结构 Project窗口 游戏工程资源 Inspector创建 属性查看器&#xff0c;属性设置、脚本组件挂载 Unity提供了几种光源…

IDEA接入阿里云百炼中免费的通义千问[2025版]

安装deepseek 上一篇文章IDEA安装deepseek最新教程2025中说明了怎么用idea安装codeGPT插件&#xff0c;并接入DeepSeek&#xff0c;无奈接入的官方api已经不能使用了&#xff0c;所以我们尝试从其他地方接入 阿里云百炼https://bailian.console.aliyun.com/ 阿里云百炼‌是阿…

3.03-3.09 Web3 游戏周报:Sunflower Land 周留存率 74.2%,谁是本周最稳链游?

回顾上周的区块链游戏概况&#xff0c;查看 Footprint Analytics 与 ABGA 最新发布的数据报告。 【3.03–3.09】Web3 游戏行业动态 Sui 背后开发公司 Mysten Labs 宣布收购游戏开发平台 ParasolYescoin 创始人因合伙人纠纷被警方带走&#xff0c;案件升级为刑事案件Animoca B…

NVIDIA k8s-device-plugin源码分析与安装部署

在《kubernetes Device Plugin原理与源码分析》一文中&#xff0c;我们从源码层面了解了kubelet侧关于device plugin逻辑的实现逻辑&#xff0c;本文以nvidia管理GPU的开源github项目k8s-device-plugin为例&#xff0c;来看看设备插件侧的实现示例。 一、Kubernetes Device Pl…