高并发下订单库存防止超卖策略

news2025/3/10 6:13:56

文章目录

  • 什么是超卖问题?
  • 推荐策略:Redis原子操作(Redis incr)+乐观锁+lua脚本
    • 利用Redis increment 的原子操作,保证库存数安全
    • update使用乐观锁
    • LUA脚本保持库存原子性

什么是超卖问题?

在并发的场景下,比如商城售卖商品中,一件商品的销售数量>库存数量的问题,称为超卖问题。主要原因是在并发场景下,请求几乎同时到达,对库存资源进行竞争,由于没有适当的并发控制策略导致的错误。

推荐策略:Redis原子操作(Redis incr)+乐观锁+lua脚本

利用Redis increment 的原子操作,保证库存数安全

  1. 先查询redis缓存中是否有库存信息,如果没有就去数据库查,这样就可以减少访问数据库的次数。获取到后把数值填入redis,以商品id为key,数量为value。 还需要设置redis对应这个key的超时时间,以防所有商品库存数据都在redis中。
  2. 比较下单数量的大小,如果够就做后续逻辑。
  3. 执行redis客户端的increment,参数为负数,则做减法。因为redis是单线程处理,并且因为increment让key对应的value减少后返回的是修改后的值。有的人会不做第一步查询直接减,其实这样不太好,因为当库存为1时,很多做减3,或者减30情况,其实都是不够,这样就白减。
  4. 扣减数据库的库存,这个时候就不需要再select查询,直接乐观锁update,把库存字段值减1 。
  5. 做完扣库存就在订单系统做下单。

update使用乐观锁

updateProduct方法中执行的sql如下:

update Product set count = count - 购买数量 where id = 商品id and count - 购买数量 >= 0 and version = 查到的version;

虽然redis已经防止了超卖,但是数据库层面,为了也要防止超卖,以防redis崩溃时无法使用或者不需要redis处理时,则用乐观锁,因为不一定全部商品都用redis。

利用sql每条单条语句都是有事务的,所以两条sql同时执行,也就只会有其中一条sql先执行成功,另外一条后执行。

LUA脚本保持库存原子性

扣减redis的库存时,最好用lua脚本处理,因为如果剩余1个时,用户买100个,这个时候其实会先把key increase -100就会变负99。
所以用lua脚本先查询数量剩余多少,是否够减100后,再去减100。

本人水平有限,有错的地方还请批评指正。

什么是精神内耗?
简单地说,就是心理戏太多,自己消耗自己。
所谓:
言未出,结局已演千百遍;
身未动,心中已过万重山;
行未果,假想灾难愁不展;
事已闭,过往仍在脑中演。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2312529.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

task01

1:大模型能够专业的回答各种问题,并且擅长文本处理,代码编写,可以减少一部分人类的工作。 本节学习了大模型提示词的三要素,角色,背景,输出样式,在kimi上我复现了教材的任务&#xf…

DeepSeek教我写词典爬虫获取单词的音标和拼写

Python在爬虫领域展现出了卓越的功能性,不仅能够高效地抓取目标数据,还能便捷地将数据存储至本地。在众多Python爬虫应用中,词典数据的爬取尤为常见。接下来,我们将以dict.cn为例,详细演示如何编写一个用于爬取词典数据…

祛魅 Manus ,从 0 到 1 开源实现

背景介绍 Manus 是最近一个现象级的大模型 Agent 工具,自从发布以来,被传出各种神乎其神的故事,自媒体又开始炒作人类大量失业的鬼故事,Manus 体验码也被炒作为 10w 的高价。 之后又出现反转,被爆出实际体验效果不佳…

C++入门——输入输出、缺省参数

C入门——输入输出、缺省参数 一、C标准库——命名空间 std C标准库std是一个命名空间,全称为"standard",其中包括标准模板库(STL),输入输出系统,文件系统库,智能指针与内存管理&am…

Spring Boot应用开发:从零到生产级实战指南

Spring Boot应用开发:从零到生产级实战指南 Spring Boot应用开发:从零到生产级实战指南一、Spring Boot的核心价值二、快速构建第一个Spring Boot应用2.1 使用Spring Initializr初始化项目2.2 项目结构解析2.3 编写第一个REST接口 三、Spring Boot的核心…

【2025前端高频面试题——系列一之MVC和MVVM】

前端高频面试题——系列一之MVC和MVVM 前言一、MVC的基本逻辑二、MVVM的基本逻辑总结 提示:片尾总结了要点,硬背的话直接跳到最后 前言 相信持续关注我文章的小伙伴知道我之前就MVC和MVVM做过较为详细的讲解,但是我发现,他依旧是…

基于遗传算法的IEEE33节点配电网重构程序

一、配电网重构原理 配电网重构(Distribution Network Reconfiguration, DNR)是一项优化操作,旨在通过改变配电网中的开关状态,优化电力系统的运行状态,以达到降低网损、均衡负载、改善电压质量等目标。配电网重构的核…

容器编排革命:从 Docker Run 到 Docker Compose 的进化之路20250309

容器编排革命:从 Docker Run 到 Docker Compose 的进化之路 一、容器化部署的范式转变 在 Docker 生态系统的演进中,容器编排正从“手动操作”走向“自动化管理”。根据 Docker 官方 2023 年开发者调查报告,78% 的开发者已采用 Docker Compo…

【高并发内存池】释放内存 + 申请和释放总结

高并发内存池 1. 释放内存1.1 thread cache1.2 central cache1.3 page cache 2. 申请和释放剩余补充 点赞👍👍收藏🌟🌟关注💖💖 你的支持是对我最大的鼓励,我们一起努力吧!😃&#x…

自然语言处理:最大期望值算法

介绍 大家好,博主又来给大家分享知识了,今天给大家分享的内容是自然语言处理中的最大期望值算法。那么什么是最大期望值算法呢? 最大期望值算法,英文简称为EM算法,它的核心思想非常巧妙。它把求解模型参数的过程分成…

Python绘制数据分析中经典的图形--列线图

Python绘制数据分析中经典的图形–列线图 列线图是数据分析中的经典图形,通过背后精妙的算法设计,展示线性模型(logistic regression 和Cox)中各个变量对于预测结果的总体贡献(线段长短),另外&…

11. 盛最多水的容器(力扣)

11. 盛最多水的容器 给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。 找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。 返回容器可以储存的最大水量。 说明:你不…

vue3 vite或者vue2 百度地图(卫星图)离线使用详细讲解

1、在Windows上下载瓦片,使用的工具为: 全能电子地图下载器3.0最新版(推荐) 下载后解压,然后进入目录"全能电子地图下载器3.0最新版(推荐)\全能电子地图下载器3.0\MapTileDownloader" 在这个目录…

大语言模型从理论到实践(第二版)-学习笔记(绪论)

大语言模型的基本概念 1.理解语言是人工智能算法获取知识的前提 2.语言模型的目标就是对自然语言的概率分布建模 3.词汇表 V 上的语言模型,由函数 P(w1w2 wm) 表示,可以形式化地构建为词序列 w1w2 wm 的概率分布,表示词序列 w1w2 wm…

Unity 通用UI界面逻辑总结

概述 在游戏开发中,常常会遇到一些通用的界面逻辑,它不论在什么类型的游戏中都会出现。为了避免重复造轮子,本文总结并提供了一些常用UI界面的实现逻辑。希望可以帮助大家快速开发通用界面模块,也可以在次基础上进行扩展修改&…

Navigation的进阶知识与拦截器配置

Navigation的进阶知识与拦截器配置 写的不是很详细,后续有时间会补充,建议参考官方文档食用 1.如何配置路由信息 1.1 创建工程结构 src/main/ets ├── pages │ └── navigation │ ├── views │ │ ├── Mine.ets //…

Java数据结构第二十一期:解构排序算法的艺术与科学(三)

专栏:Java数据结构秘籍 个人主页:手握风云 目录 一、常见排序算法的实现 1.1. 归并排序 二、排序算法复杂度及稳定性分析 一、常见排序算法的实现 1.1. 归并排序 归并排序是建⽴在归并操作上的⼀种有效的排序算法,该算法是采⽤分治法的一个⾮常典型的…

go切片定义和初始化

1.简介 切片是数组的一个引用,因此切片是引用类型,在进行传递时,遵守引用传递的机制。切片的使用和数组类似,遍历切片、访问切片的元素和切片的长度都一样。。切片的长度是可以变化的,因此切片是一个可以动态变化的数…

【NLP 39、激活函数 ⑤ Swish激活函数】

我的孤独原本是座荒岛,直到你称成潮汐,原来爱是让个体失序的永恒运动 ——25.2.25 Swish激活函数是一种近年来在深度学习中广泛应用的激活函数,由Google Brain团队在2017年提出。其核心设计结合了Sigmoid门控机制和线性输入的乘积&#xff0c…

南开提出1Prompt1Story,无需训练,可通过单个连接提示实现一致的文本到图像生成。

(1Prompt1Story)是一种无训练的文本到图像生成方法,通过整合多个提示为一个长句子,并结合奇异值重加权(SVR)和身份保持交叉注意力(IPCA)技术,解决了生成图像中身份不一致…