PyTorch系列教程:Tensor.view() 方法详解

news2025/3/9 20:37:43

这篇简明扼要的文章是关于PyTorch中的tensor.view()方法的介绍与应用,与reshape()方法的区别,同时给出示例进行详细解释。

Tensor基础

Tensor(张量)的视图是一个新的Tensor,它与原始Tensor共享相同的底层数据,但具有不同的形状或大小。view()方法用于在不改变其数据的情况下将张量重塑为新的形状。它返回原始张量的新视图。这意味着修改新的张量会影响原来的张量,反之亦然。
在这里插入图片描述

语法:

Tensor.view(*shape) -> Tensor
  • self:想要重塑的输入Tensor。
  • *shape:一个torch.Size对象或指定输出张量所需形状的整数序列。还可以使用-1从其他维度推断一个维度的大小。

然而,Tensor.view()仅适用于连续张量,即存储在连续内存中的张量。如果输入张量不是连续的,则需要在调用tensor .view()之前调用tensor.consecuous()。你可以通过调用tensor.is_consecuous()来检查张量是否是连续的。

代码示例

下面演示如何在实践中使用tensor.view()方法:

>>> import torch
>>> torch.manual_seed(2023)
>>> # Create a tensor with the shape of 4x4
>>> x = torch.randn(4, 4)
>>> print(x)
tensor([[ 0.4305, -0.3499,  0.4749,  0.9041],
        [-0.7021,  1.5963,  0.4228, -0.6940],
        [ 0.9672,  1.5569, -2.3860,  0.6994],
        [-1.0325, -2.6043,  0.9337, -0.1050]])
>>> y = x.view(16)
>>> print(y)
tensor([ 0.4305, -0.3499,  0.4749,  0.9041, -0.7021,  1.5963,  0.4228, -0.6940,
         0.9672,  1.5569, -2.3860,  0.6994, -1.0325, -2.6043,  0.9337, -0.1050])
>>> z=x.view(2,8)
>>> print(z)
tensor([[ 0.4305, -0.3499,  0.4749,  0.9041, -0.7021,  1.5963,  0.4228, -0.6940],
        [ 0.9672,  1.5569, -2.3860,  0.6994, -1.0325, -2.6043,  0.9337, -0.1050]])
>>> w=x.view(-1,2)
>>> print(w)
tensor([[ 0.4305, -0.3499],
        [ 0.4749,  0.9041],
        [-0.7021,  1.5963],
        [ 0.4228, -0.6940],
        [ 0.9672,  1.5569],
        [-2.3860,  0.6994],
        [-1.0325, -2.6043],
        [ 0.9337, -0.1050]])
>>> 

你可以看到y和x有相同的数据,但形状不同,是16x1。Z和x有相同的数据,但形状不同,是2x8。W和x有相同的数据,但形状不同,是8x2。w的最后一个维度是从其他维度和x中的元素数量推断出来的。

Torch.view()和torch.reshape()的区别

torch.reshape()函数和tensor .view()方法之间的区别在于torch.reshape()可以返回原始张量的视图或副本,具体取决于新形状是否与原始形状和步幅兼容,而tensor .view()总是返回原始张量的视图,但仅适用于连续张量。

当你想重塑一个张量而不担心它的连续性或复制行为时,你应该使用torch.reshape(),当你想重塑一个连续张量并确保它与原始张量共享相同的数据时,你应该使用tensor. view()。

示例对比

场景 1:数据连续时,两者行为一致
import torch

# 创建一个连续存储的张量 (2x3)
x = torch.tensor([[1, 2, 3], [4, 5, 6]])
print("原始形状:", x.shape)      # (2, 3)
print("是否连续:", x.is_contiguous())  # True

# 使用 view 改变形状 (3x2)
y = x.view(3, 2)
print("view 结果:", y)           # [[1, 2], [3, 4], [5, 6]]

# 使用 reshape 改变形状 (3x2)
z = x.reshape(3, 2)
print("reshape 结果:", z)        # [[1, 2], [3, 4], [5, 6]]

结果一致,且未复制数据(is_contiguous() 返回 True)。

场景 2:数据不连续时,view 失败,reshape 成功
# 转置后数据不再连续(原按行存储,转置后按列逻辑访问)
x_transposed = x.t()
print("转置后形状:", x_transposed.shape)      # (3, 2)
print("是否连续:", x_transposed.is_contiguous())  # False

# 尝试用 view 改变形状 → 报错!
try:
    y = x_transposed.view(2, 3)
except RuntimeError as e:
    print("view 错误:", str(e))  # "invalid argument: cannot view a non-contiguous tensor as ..."

# 使用 reshape 成功(自动复制数据)
z = x_transposed.reshape(2, 3)
print("reshape 结果:", z)         # [[1, 4], [2, 5], [3, 6]]
print("是否连续:", z.is_contiguous())  # True
场景 3:reshape 的灵活性(使用 -1
# 不确定某一维度的大小时,仅用 reshape
x_2d = torch.randn(4, 6)  # 形状 (4, 6)
# 将最后一维压缩为总和,剩余维度自动推断
y = x_2d.reshape(-1, 3)   # 结果形状: (8, 3)
print(y.shape)              # torch.Size([8, 3])

因此,我们应优先用 view:当数据连续且形状明确时,view 更高效(零复制);优先用 reshape:需处理非连续数据、动态推断维度或不确定形状时。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2312326.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

软件测试的基础入门(二)

文章目录 一、软件(开发)的生命周期什么是生命周期软件(开发)的生命周期需求分析计划设计编码测试运行维护 二、常见的开发模型瀑布模型流程优点缺点适应的场景 螺旋模型流程优点缺点适应的场景 增量模型和迭代模型流程适应的场景…

地下变电站如何实现安全智能运营-以110kV站为例看环境监测与设备联控

1、地下变电站简介 在经济发达的地区,由于城市中心土地资源紧张、征地拆迁费用昂贵,因此采用地下变电站来解决这些问题不失为一个好的途径和思路。地下变电站一般采用室内全封闭式组合电气设备,220&#x…

windows无界面后台定时任务 (重启自启动,ODBS为例)

一、前言 mdb(Microsoft Database)是Microsoft Access中使用的一种数据存储格式,可以通过ODBC驱动程序进行访问和操作,在Python中也可以安装相应模块打开。 这是我在项目中更新bs数据的一个实践记录,结合windows定时一起记录一下,方便以后照搬~ 二、安装 Python安装库…

FPGA 实验报告:四位全加器与三八译码器仿真实现

目录 安装Quartus软件 四位全加器 全加器、半加器 半加器: 全加器: 四位全加器电路图 创建项目 半加器 全加器 四位全加器 代码实现 半加器 全加器 四位全加器 三八译码器 创建项目 代码展示 modelsim仿真波形图 四位全加器 三八译码…

win11 Visual Studio 17 2022源码编译 opencv4.11.0 + cuda12.6.3 启用GPU加速

win11 Visual Studio 17 2022 源码编译 opencv4.11.0 cuda12.6.3 启用GPU加速 配置: 生成 opencv 生成 opencv-python 1 下载源码和安装软件 win11 x64 系统 安装Visual Studio 17 2022 下载opencv4.11.0 源码 https://github.com/opencv/opencv/releases/tag/4.11.0 下载…

Ribbon实现原理

文章目录 概要什么是Ribbon客户端负载均衡 RestTemplate核心方法GET 请求getForEntitygetForObject POST 请求postForEntitypostForObjectpostForLocation PUT请求DELETE请求 源码分析类图关系 与Eureka结合重试机制 概要 什么是Ribbon Spring Cloud Ribbon是一个基于HTTP和T…

MuMu-LLaMA:通过大型语言模型进行多模态音乐理解和生成(Python代码实现+论文)

MuMu-LLaMA 模型是一种音乐理解和生成模型,能够进行音乐问答以及从文本、图像、视频和音频生成音乐,以及音乐编辑。该模型利用了用于音乐理解的 MERT、用于图像理解的 ViT 和用于视频理解的 ViViT 等编码器,以及作为音乐生成模型(…

2025最新比较使用的ai工具都有哪些,分别主要用于哪些方面?

文章目录 一、AI对话与交互工具二、AI写作与内容生成工具三、AI绘画与设计工具四、AI视频生成工具五、办公与效率工具六、其他实用工具选择建议 根据2025年最新行业动态和用户反馈,以下AI工具在多个领域表现突出,覆盖对话、写作、设计、视频生成等场景&a…

在ArcMap中通过Python编写自定义工具(Python Toolbox)实现点转线工具

文章目录 一、需求二、实现过程2.1、创建Python工具箱(.pyt)2.2、使用catalog测试代码2.3、在ArcMap中使用工具 三、测试 一、需求 通过插件的形式将点转线功能嵌入ArcMap界面,如何从零开始创建一个插件,包括按钮的添加、工具的实…

后智能体时代的LLM和Agent

文章目录 1. 关于AI重塑的哲学体系2. 关于AI大模型体系的认知3. 关于AI大模型体系的畅想4. 关于人和AI大模型体系的共处5. 写在最后 随着OpenAI、Deepseek、Manus等等智能体的爆火,人们茶前饭后、插科打诨的话题都离不开这些智能体,现状也正如《人民日报…

景联文科技:以精准数据标注赋能AI进化,构筑智能时代数据基石

在人工智能技术席卷全球的浪潮中,高质量数据已成为驱动AI模型进化的核心燃料。作为全球领先的AI数据服务解决方案提供商,景联文科技深耕数据标注领域多年,以技术为基、以专业为本,致力于为全球客户提供全场景、高精度、多模态的数…

嵌入式L6计算机网络

Telnet不加密 socket是应用层和下面的内核

华为鸿蒙系统全景解读:从内核设计到生态落地的技术革命

华为鸿蒙系统全景解读:从内核设计到生态落地的技术革命 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,可以分享一下给大家。点击跳转到网站。 https://www.captainbed.cn/ccc 文章目录 华为鸿蒙系统全景解读&#x…

八卡5090服务器首发亮相!

AI 人工智能领域热度居高不下。OpenAI 的 GPT - 4 凭强悍语言处理能力,在内容创作、智能客服等领域广泛应用。清华大学团队的 DeepSeek 大模型在深度学习训练优势突出,正促使各行业应用端算力需求向推理主导转变,呈爆发式增长 。 随着 DeepS…

基于SSM+Vue+uniapp的驾校预约管理小程序+LW示例

系列文章目录 1.基于SSM的洗衣房管理系统原生微信小程序LW参考示例 2.基于SpringBoot的宠物摄影网站管理系统LW参考示例 3.基于SpringBootVue的企业人事管理系统LW参考示例 4.基于SSM的高校实验室管理系统LW参考示例 5.基于SpringBoot的二手数码回收系统原生微信小程序LW参考示…

《用Python+PyGame开发双人生存游戏!源码解析+完整开发思路分享》

导语​ "你是否想过用Python开发一款可玩性高的双人合作游戏?本文将分享如何从零开始实现一款类《吸血鬼幸存者》的生存射击游戏!包含完整源码解析、角色系统设计、敌人AI逻辑等核心技术点,文末提供完整代码包下载!" 哈…

ArcGIS操作:13 生成最小外接矩阵

应用情景:筛选出屋面是否能放下12*60m的长方形,作为起降场候选点(一个不规则的形状内,判断是否能放下指定长宽的长方形) 1、面积初步筛选 Area ≥ 720 ㎡ 面积计算见 2、打开 ArcToolbox → Data Management Tools …

manus对比ChatGPT-Deep reaserch进行研究类学术相关数据分析!谁更胜一筹?

没有账号,只能挑选一个案例 一夜之间被这个用全英文介绍全华班出品的新爆款国产AI产品的小胖刷频。白天还没有切换语言的选项,晚上就加上了。简单看了看团队够成,使用很长实践的Monica创始人也在其中。逐渐可以理解,重心放在海外产…

Python —— pow()函数

一、示例1 # 计算 2 的 3 次幂 result1 pow(2, 3) print(result1) # 输出: 8# 计算 2.5 的 2 次幂 result2 pow(2.5, 2) print(result2) # 输出: 6.25 二、示例2 # 计算 (2 ** 3) % 5 result3 pow(2, 3, 5) print(result3) # 输出: 3 三、示例3 ntxt input("请输…

开发环境搭建-完善登录功能

一.完善登录功能 我们修改密码为md5中的格式,那么就需要修改数据库中的密码和将从前端获取到的密码转化成md5格式,然后进行比对。比对成功则登录成功,失败则禁止登录。 二.md5格式 使用DigestUtils工具类进行md5加密,调用md4Dig…