全文链接:https://tecdat.cn/?p=40925
在生态与生物学研究中,数据常呈现复杂结构特征。例如不同种群、采样点或时间序列的观测数据间往往存在相关性(点击文末“阅读原文”获取完整代码、数据、文档)。
传统线性模型在处理这类非独立数据时存在局限性,而混合效应模型通过同时纳入固定效应与随机效应,为解决此类问题提供了有效方案。本文以龙类智力研究为例,探讨混合效应模型的构建与应用。
数据探索与预处理
研究数据来自龙类智力测试,包含体长(bodyLength
)与测试得分(testScore
)等变量,采集自8个山脉3个采样点。
通过标准化处理体长变量:
dradat$length <a(dag_datodyLeng)
直方图显示测试得分近似正态分布(图1),符合线性模型假设。
传统线性模型的局限性
初步建立线性模型:
模型显示体长对测试得分有显著正向影响(p<0.05)。但散点图揭示不同山脉间数据存在明显异质性(图2),提示观测值可能存在非独立性。
进一步分析发现,不同山脉间测试得分存在显著差异(图3),说明传统模型忽略了数据的层级结构,可能导致结果偏差。
混合效应模型构建
引入山脉作为随机效应:
library(lme data=drta)
summary(mixed_model)
模型结果显示,体长的影响不再显著(p>0.05),表明原线性模型高估了体长效应。随机效应分析表明,山脉间差异解释了约60%的剩余方差(339.7/(339.7+223.8))。
为处理嵌套结构(采样点嵌套于山脉),创建显式嵌套变量:
ste(dragon\_data$mountainRange, dragon\_data$site))
改进模型
模型可视化与结果解释
利用ggeffects
包绘制预测曲线:
结果显示体长对测试得分无显著影响(图4),验证了混合效应模型的有效性。
点击标题查阅往期内容
R软件用潜在类别混合模型LCM分析老年人抑郁数据轨迹多变量建模研究
左右滑动查看更多
01
02
03
04
随机斜率模型扩展
当不同山脉间可能存在异质关系时,可构建随机斜率模型:
可视化结果显示不同山脉的回归斜率存在差异(图5),表明模型灵活性提升。
模型诊断与优化
通过残差分析验证模型假设:
残差分布基本符合正态性假设(图6),表明模型拟合良好。
结论与建议
本研究通过混合效应模型有效解决了传统方法无法处理的层级数据问题,揭示了体长与龙类智力间的真实关系。研究结果表明:
数据层级结构必须纳入模型考量
随机效应的合理选择对结果解释至关重要
模型可视化是验证假设的重要手段
未来研究可进一步探索广义混合效应模型在非线性数据中的应用,以及模型参数的贝叶斯估计方法。
本文中分析的完整数据、代码、文档分享到会员群,扫描下面二维码即可加群!
资料获取
在公众号后台回复“领资料”,可免费获取数据分析、机器学习、深度学习等学习资料。
点击文末“阅读原文”
获取完整代码、数据、文档。
本文选自《R软件线性模型与lmer混合效应模型对生态学龙类智力测试数据层级结构应用》。
点击标题查阅往期内容
R语言+AI提示词:贝叶斯广义线性混合效应模型GLMM生物学Meta分析
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码
R语言用潜类别混合效应模型(Latent Class Mixed Model ,LCMM)分析老年痴呆年龄数据
R语言贝叶斯广义线性混合(多层次/水平/嵌套)模型GLMM、逻辑回归分析教育留级影响因素数据
R语言估计多元标记的潜过程混合效应模型(lcmm)分析心理测试的认知过程
R语言因子实验设计nlme拟合非线性混合模型分析有机农业施氮水平
R语言非线性混合效应 NLME模型(固定效应&随机效应)对抗哮喘药物茶碱动力学研究
R语言用线性混合效应(多水平/层次/嵌套)模型分析声调高低与礼貌态度的关系
R语言LME4混合效应模型研究教师的受欢迎程度
R语言nlme、nlmer、lme4用(非)线性混合模型non-linear mixed model分析藻类数据实例
R语言混合线性模型、多层次模型、回归模型分析学生平均成绩GPA和可视化
R语言线性混合效应模型(固定效应&随机效应)和交互可视化3案例
R语言用lme4多层次(混合效应)广义线性模型(GLM),逻辑回归分析教育留级调查数据
R语言 线性混合效应模型实战案例
R语言混合效应逻辑回归(mixed effects logistic)模型分析肺癌数据
R语言如何用潜类别混合效应模型(LCMM)分析抑郁症状
R语言基于copula的贝叶斯分层混合模型的诊断准确性研究
R语言建立和可视化混合效应模型mixed effect model
R语言LME4混合效应模型研究教师的受欢迎程度
R语言 线性混合效应模型实战案例
R语言用Rshiny探索lme4广义线性混合模型(GLMM)和线性混合模型(LMM)
R语言基于copula的贝叶斯分层混合模型的诊断准确性研究
R语言如何解决线性混合模型中畸形拟合(Singular fit)的问题
基于R语言的lmer混合线性回归模型
R语言用WinBUGS 软件对学术能力测验建立层次(分层)贝叶斯模型
R语言分层线性模型案例
R语言用WinBUGS 软件对学术能力测验(SAT)建立分层模型
使用SAS,Stata,HLM,R,SPSS和Mplus的分层线性模型HLM
R语言用WinBUGS 软件对学术能力测验建立层次(分层)贝叶斯模型
SPSS中的多层(等级)线性模型Multilevel linear models研究整容手术数据
用SPSS估计HLM多层(层次)线性模型模型