LLM 学习(一 序言)

news2025/4/22 2:18:02

文章目录

  • LLM 学习(一 序言)
      • 知识点1:“Embedding” 在人工智能领域:
      • 知识点2:Embedding 引入位置信息的原因
      • 知识点3:在 Transformer 的 Decoder 翻译第 i 个单词时进行 Mask 第 i+1 个单词的操作

LLM 学习(一 序言)

1.序言
LLM学习 Transformer 结构大概,图片的视频链接

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

知识点补充:

知识点1:“Embedding” 在人工智能领域:

是一种 “向量化” 或 “向量表示” 的技术,核心是将各类数据映射为连续向量,以在向量空间中体现数据特征及相互关系

  • 机器学习:原理是把离散数据映射为连续向量,从而捕捉数据间潜在关系;通常使用神经网络中的 embedding 层,经训练得到数据的向量表示。该技术能提升模型性能,增强其泛化能力,还可降低计算成本。
  • 自然语言处理(NLP):基于分布式假设,将文本转换为连续向量来捕捉语义信息。常采用词嵌入技术(如 word2vec)或复杂模型(如 Bidirectional Encoder Representations from Transformers,BERT,基于 Transformer 的双向编码器表示)学习文本表示,能够解决词汇鸿沟问题,为文本分类、情感分析、机器翻译等复杂 NLP 任务提供支持,助力文本语义理解。在该领域中,语义相近的单词在向量空间中的位置也相近。
  • 图像领域:如 image embedding(图像嵌入),是将图像映射为向量,以便计算机更好地处理和理解图像信息,用于图像检索、分类等任务。

知识点2:Embedding 引入位置信息的原因

此外,在一些生成式 AI 工具(如 Stable Diffusion )的应用场景中,Embedding 可理解为提示词打包。通过引入特定的触发词,就能代表原本大量描述性提示词的含义,在文件体积小的情况下,引导生成符合预期的结果,还能用于生成特定动作、特征或画风 。
在 Transformer 等模型中,Embedding 需要引入位置信息主要有以下原因:

  • 捕捉序列顺序:自然语言是一种具有顺序结构的信息,词语在句子中的位置不同,句子表达的含义也会不同,如 “我喜欢你” 和 “你喜欢我”。普通的词 Embedding 只是对词本身语义的表示,不包含位置信息 ,引入位置 Embedding 能让模型感知词语在序列中的位置,从而理解句子的正确语义和逻辑顺序
  • 解决模型局限性:Transformer 模型基于自注意力机制,这种机制本身在处理输入时平等对待每个位置的元素,没有内置的顺序信息。若不添加位置 Embedding,模型无法区分 “苹果被我吃了” 和 “我吃了苹果” 这样词相同但顺序不同的句子,位置 Embedding 能弥补这一缺陷,增强模型对序列结构的理解能力
  • 提升模型性能:对于机器翻译、文本生成等任务,准确把握序列顺序至关重要。位置 Embedding 帮助模型更好地学习长距离依赖关系和上下文信息,在处理长句子时,能让模型知道不同词语之间的相对位置,从而更准确地生成或理解文本,提升模型在各类自然语言处理任务中的表现。

知识点3:在 Transformer 的 Decoder 翻译第 i 个单词时进行 Mask 第 i+1 个单词的操作

  • 符合翻译的自回归特性
    Transformer 的 Decoder 部分是自回归模型,模拟人类翻译过程,即从左到右依次生成译文单词。在翻译第 i 个单词时,模型应该仅依据已经翻译出的 1 到 i-1 个单词以及 Encoder 传递过来的源语言编码信息进行预测,而不应该提前 “看到” 未来要生成的单词(第 i+1 个及之后的单词)。如果不进行 Mask 操作,模型就会利用到未来单词的信息,这与实际的翻译过程和自回归机制不符,也无法真实地学习到单词之间的依赖关系和正确的生成顺序
  • 防止模型信息泄露
    在训练过程中,如果不将第 i+1 个及之后的单词 Mask 掉,模型在预测第 i 个单词时,会无意中获取到后续单词的信息,导致模型不是基于正确的上下文来学习和预测,从而产生信息泄露问题。通过 Mask 操作,能够强制模型只能利用当前已有的信息进行预测,让模型学习到如何根据已有的上文生成下一个合理的单词,提高模型对上下文信息的理解和利用能力,增强模型的泛化能力和鲁棒性,使其在实际翻译任务中表现得更好。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2311778.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

STM32-HAL库初始化时钟

使能和失能外设GPIOA 时钟信号初始化函数 HAL_RCC_OscConfig函数: HAL_StatusTypeDef是该函数的返回值类型,最顶上的那句话只是这个函数的原型 HAL_RCC_ClockConfig函数: 因为FLASH实际上只能支持24MHz的时钟信号所以如果用高于24MHz的信号输入则要用到等…

批量将 Word 拆分成多个文件

当一个 Word 文档太大的时候,我们通常会将一个大的 Word 文档拆分成多个小的 Word 文档,在 Office 中拆分 Word 文档是比较麻烦的,我们需要将 Word 文档的页面复制到另外一个 Word 文档中去,然后删除原 Word 文档中的内容。当然也…

【算法系列】桶排序算法介绍及实现

文章目录 桶排序算法介绍及实现桶排序的基本原理算法实现步骤Java代码实现性能优化结论 桶排序算法介绍及实现 桶排序的基本原理 桶排序(Bucket Sort)是一种基于分组的排序算法,其核心思想是将一组数据按某种 规则分配到多个桶中&#xff0…

13.数据结构(软考)

13.数据结构(软考) 13.1:线性表 13.1.1 顺序表 顺序存储方式:数组的内存是连续分配的并且是静态分配的,即在使用数组之前需要分配固定大小的空间。 时间复杂度: 读:O(1) 查询:1,(n1)/2&#x…

拉拉扯扯adfda

read -p "请输入一个成绩:" sorce if [ "$sorce" -ge 90 -a "$sorce" -le 100 ] thenecho A elif [ "$sorce" -ge 80 -a "$sorce" -lt 90 ] thenecho B elif [ "$sorce" -ge 70 -a "$sorce"…

【计算机网络】TCP

1.基本概念及报文格式 基本概念: TCP的中文全称为传输控制协议(Transmission Control Protocol),是一种可靠的,面向连接的,基于字节流的传输层通信协议。 报文格式: 序号 :占32⽐…

关于tomcat使用中浏览器打开index.jsp后中文显示不正常是乱码,但英文正常的问题

如果是jsp文件就在首行加 “<% page language"java" contentType"text/html; charsetUTF-8" pageEncoding"UTF-8" %>” 如果是html文件 在head标签加入&#xff1a; <meta charset"UTF-8"> 以jsp为例子&#xff0c;我们…

pytest结合allure

Allure 一、文档二、指令三、装饰器3.1 allure.step装饰器3.2 allure.description装饰器3.3 allure.title装饰器3.4 allure.link、allure.issue 和 allure.testcase装饰器3.5 allure.epic、allure.feature 和 allure.story装饰器3.6 allure.severity装饰器 一、文档 allure文档…

vue2升vue3,uniapp兼容鸿蒙app踩坑记录

前提&#xff1a;最近鸿蒙势头很好&#xff0c;公司的 uniapp vue2 项目&#xff0c;要兼容鸿蒙app。就开始了我的uniapp转鸿蒙踩坑之旅&#xff0c;请看下文&#xff08;注意下文都是在uniapp开发基础上&#xff09; 1. 首先鸿蒙开发只支持Vue3&#xff0c;不支持Vue2、不支持…

DeepSeek × 豆包深度整合指南:工作流全解析

DeepSeek 豆包深度整合指南&#xff1a;工作流全解析 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;可以分享一下给大家。点击跳转到网站。 https://www.captainbed.cn/ccc 文章目录 DeepSeek 豆包深度整合指南&#xff1a;工…

海思Hi3516DV300交叉编译opencv

OpenCV是一个开源的跨平台计算机视觉库&#xff0c;支持C、Python等多种语言&#xff0c;适用于图像处理、目标检测、机器学习等任务。其核心由C编写&#xff0c;高效轻量&#xff0c;提供实时视觉处理功能&#xff0c;广泛应用于工业自动化、医疗影像等领域。 1 环境准备 1…

[FE] React 初窥门径(五):React 组件的加载过程(commit 阶段)

1. 回顾 前一篇文章我们看到&#xff0c;ReactDOM.render 总共包含这些步骤&#xff0c; 然后介绍了 performSyncWorkOnRoot 做的事情&#xff0c;它主要做了两件事&#xff0c; renderRootSync 可称之为 render 阶段&#xff1a;创建了一颗 Fiber Tree&#xff08;包含 html …

java环境部署

java环境部署 一、准备工作 jrejdkeclipse jdk下载&#xff1a;21和1.8-----官网&#xff1a;Oracle&#xff1a;Java 下载 |神谕 该处选择要依据自身的系统类型选择下载 idea的下载安装&#xff1a;IntelliJ IDEA | Other Versions 二、安装 三、环境配置 四、使用 五、i…

100天精通Python(爬虫篇)——第115天:爬虫在线小工具_Curl转python爬虫代码工具(快速构建初始爬虫代码)

文章目录 一、curl是什么&#xff1f;二、爬虫在线小工具&#xff08;牛逼puls&#xff09;三、实战操作 一、curl是什么&#xff1f; 基本概念&#xff1a;curl 支持多种协议&#xff0c;如 HTTP、HTTPS、FTP、SFTP 等&#xff0c;可用于从服务器获取数据或向服务器发送数据&a…

python-leetcode-解决智力问题

2140. 解决智力问题 - 力扣&#xff08;LeetCode&#xff09; 这道题是一个典型的 动态规划&#xff08;Dynamic Programming, DP&#xff09; 问题&#xff0c;可以使用 自底向上 的方式解决。 思路 定义状态&#xff1a; 设 dp[i] 表示从第 i 题开始&#xff0c;能获得的最高…

SpireCV荣获Gitee 最有价值开源项目称号

什么是GVP&#xff1f; GVP全称Gitee Valuable Project&#xff0c;意思为Gitee最有价值开源项目。作为GVP称号的获得者&#xff0c;SpireCV在开源社区中展现出了卓越的实力和影响力&#xff0c;为开源软件的发展和推广做出了积极的贡献。 这一荣誉不仅充分肯定了过去阿木实验…

数据结构基础(一)

文章目录 1 数据结构基础1.1 什么是程序&#xff1f;1.2 数据、数据元素、数据项、数据对象1.3 基本的逻辑结构 2 算法效率2.1 时间复杂度2.1.1 循环执行次数2.1.2 大O(n)表示法 2.2 空间复杂度 1 数据结构基础 1.1 什么是程序&#xff1f; ​ 程序 数据结构 &#xff0b; 算…

⭐算法OJ⭐N-皇后问题 II【回溯剪枝】(C++实现)N-Queens II

⭐算法OJ⭐N-皇后问题【回溯剪枝】&#xff08;C实现&#xff09;N-Queens 问题描述 The n-queens puzzle is the problem of placing n n n queens on an n n n \times n nn chessboard such that no two queens attack each other. Given an integer n, return the num…

项目管理工具 Maven

目录 1.Maven的概念 1.1​​​​​什么是Maven 1.2什么是依赖管理 1.3什么是项目构建 1.4Maven的应用场景 1.5为什么使用Maven 1.6Maven模型 2.初识Maven 2.1Maven安装 2.1.1安装准备 2.1.2Maven安装目录分析 2.1.3Maven的环境变量 2.2Maven的第一个项目 2.2.1按照约…

国产编辑器EverEdit - 宏功能介绍

1 宏 1.1 应用场景 宏是一种重复执行简单工作的利器&#xff0c;可以让用户愉快的从繁琐的工作中解放出来&#xff0c;其本质是对键盘和菜单的操作序列的录制&#xff0c;并不会识别文件的内容&#xff0c;属于无差别无脑执行。 特别是对一些有规律的重复按键动作&#xff0c;…