索提诺比率(Sortino Ratio):更精准的风险调整收益指标(中英双语)

news2025/2/27 3:32:11

索提诺比率(Sortino Ratio):更精准的风险调整收益指标 📉📊

📌 什么是索提诺比率?

在投资分析中,我们通常使用 夏普比率(Sharpe Ratio) 来衡量风险调整后的收益,但夏普比率有一个缺陷:它把所有波动都当作风险,不管是上涨还是下跌 📈📉。

然而,在投资者眼中,下跌风险才是真正的风险,而上涨波动是好事。因此,索提诺比率(Sortino Ratio) 诞生了,它专门衡量 下行风险,让我们更精确地评估投资表现。✅

索提诺比率的计算公式如下:
Sortino Ratio = R p − R f σ d \text{Sortino Ratio} = \frac{R_p - R_f}{\sigma_d} Sortino Ratio=σdRpRf

其中:

  • ( R p R_p Rp ) = 投资组合的平均收益率
  • ( R f R_f Rf ) = 无风险收益率(如国债利率)
  • ( σ d \sigma_d σd ) = 下行标准差(Downside Deviation),仅计算负收益的波动,忽略正收益的波动

📌 核心区别:
夏普比率 计算所有波动,包括上涨和下跌
索提诺比率 只计算下跌波动,忽略上涨的“好波动”


📌 为什么要用索提诺比率?

索提诺比率的最大优势在于,它更符合投资者的实际需求,因为投资者关心的是 如何减少亏损,而不是减少收益的上涨 🤔。

1. 更精准衡量投资的风险调整收益

  • 只考虑 向下波动,避免了夏普比率的误导
  • 适用于 稳健增长型投资(如低波动股票、蓝筹股、债券)

2. 适用于风险管理

  • 基金、量化交易、对冲基金领域广泛应用
  • 价值投资者、养老基金、保险公司 更看重索提诺比率,因为它专注于 避免损失

3. 适用于高波动资产

  • 适合评估 比特币、科技股、风险投资 这类波动较大的资产
  • 避免误判高增长但低风险的资产

📌 索提诺比率的计算示例(Python 代码)

假设一个投资组合年化收益率为 12%,无风险收益率 3%,但仅考虑下跌风险后,年化下行波动率为 10%,那么索提诺比率计算如下:

# 计算索提诺比率
Rp = 0.12  # 投资组合收益率 12%
Rf = 0.03  # 无风险利率 3%
sigma_d = 0.10  # 仅考虑下行风险的标准差 10%

sortino_ratio = (Rp - Rf) / sigma_d
print(f"索提诺比率: {sortino_ratio:.2f}")  # 计算并输出索提诺比率

输出:

索提诺比率: 0.90

📌 索提诺比率 0.90,意味着每 1 单位的下行风险,投资组合可以提供 0.90 单位的超额收益


📌 如何解读索提诺比率?

一般来说,索提诺比率的数值可以这样解读:

索提诺比率投资表现
< 0糟糕的投资,亏损大于无风险收益 ❌
0 ~ 1风险过大,收益不稳定 ⚠️
1 ~ 2良好的投资,风险回报均衡 ✅
2 ~ 3优秀的投资,回报远超风险 🌟
> 3卓越的投资,低风险高收益 🚀

📌 一般来说,索提诺比率大于 1 就算不错,大于 2 则属于优质投资。


📌 索提诺比率的实际应用

📍 1. 选择最优的投资基金

投资者在挑选基金时,可以用索提诺比率筛选出风险控制更好的基金:

  • 基金 A:年化收益 15%,下行波动 12%,索提诺比率 = 1.00
  • 基金 B:年化收益 12%,下行波动 6%,索提诺比率 = 1.50
  • 基金 C:年化收益 18%,下行波动 15%,索提诺比率 = 0.90

📌 尽管基金 C 的收益最高,但波动大,索提诺比率最低。而基金 B 的风险调整收益最佳,可能是更好的选择。


📍 2. 比较不同资产类别

索提诺比率适用于对比不同类型的资产

  • 比特币(BTC)索提诺比率 = 1.2
  • 标普 500 指数 ETF 索提诺比率 = 1.5
  • 国债 ETF 索提诺比率 = 2.5

📌 国债 ETF 风险最小,因此索提诺比率最高,而比特币的高波动使得索提诺比率相对较低。


📍 3. 量化投资和对冲基金

  • 量化基金 通过算法调整仓位,提高索提诺比率
  • 对冲基金 通过风险对冲,控制下行波动

📌 许多顶级对冲基金在衡量策略时,更倾向于用索提诺比率,而非夏普比率,因为它更关注“控制风险”而不是“减少波动”。


📌 索提诺比率 vs. 夏普比率:哪个更好?

指标夏普比率索提诺比率
波动计算计算所有波动 📉📈只计算下跌风险 📉
适用投资适用于所有投资适用于风险管理
适用资产适用于 指数基金、股票适用于 对冲基金、价值投资
主要缺点误判高波动优质资产可能忽略高回报的波动

📌 如果投资组合有较大上涨波动,但总体回报高,索提诺比率更适合评估投资价值。


📌 结论

🔹 索提诺比率(Sortino Ratio)是衡量风险调整收益的更精确工具,专门关注 下行风险
🔹 相比夏普比率,它能更好地评估稳健投资、避险基金和高波动资产
🔹 适用于基金筛选、资产配置、交易策略优化,特别是对冲基金和量化投资
🔹 当投资目标是降低风险并获取稳定收益时,索提诺比率比夏普比率更具参考价值!

总结一句话:如果你更关心“亏多少”而不是“涨多少”,索提诺比率比夏普比率更值得关注!📈💡


💡 你更喜欢用夏普比率还是索提诺比率来衡量投资?欢迎留言讨论!📊🚀

Sortino Ratio: A More Precise Measure of Risk-Adjusted Returns 📉📊

📌 What is the Sortino Ratio?

In investment analysis, the Sharpe Ratio is widely used to measure risk-adjusted returns. However, its major flaw is that it treats all volatility as risk, including both upward (positive) and downward (negative) movements 📈📉.

But in reality, investors only care about downside risk—we don’t mind if an asset is volatile as long as it’s going up! 🚀

To solve this issue, the Sortino Ratio was introduced as a more refined metric that only considers negative (downside) volatility in risk assessment. ✅

The formula for the Sortino Ratio is:
Sortino Ratio = R p − R f σ d \text{Sortino Ratio} = \frac{R_p - R_f}{\sigma_d} Sortino Ratio=σdRpRf

Where:

  • ( R p R_p Rp ) = Portfolio return (average return of the investment)
  • ( R f R_f Rf ) = Risk-free rate (e.g., the return on government bonds)
  • ( σ d \sigma_d σd ) = Downside deviation, which measures only the negative volatility

📌 Key difference:
Sharpe Ratio considers both upside and downside risk
Sortino Ratio only considers downside risk, ignoring positive volatility


📌 Why Use the Sortino Ratio?

The biggest advantage of the Sortino Ratio is that it aligns with investors’ actual concerns—it focuses on how to avoid losses rather than limiting gains 🤔.

1. More Accurate Risk-Adjusted Returns

  • Only considers downside risk, avoiding misleading results from the Sharpe Ratio
  • Ideal for low-volatility investments (e.g., blue-chip stocks, bonds)

2. Suitable for Risk Management

  • Widely used in fund management, hedge funds, and quantitative trading
  • Value investors, pension funds, and insurance companies prefer it since they focus on minimizing downside risks

3. Useful for High-Volatility Assets

  • Ideal for evaluating Bitcoin, tech stocks, venture capital, and startups
  • Prevents misjudging high-growth, low-risk assets

📌 Sortino Ratio Calculation Example (Python Code)

Assume a portfolio has an annual return of 12%, a risk-free rate of 3%, and a downside deviation of 10%. The Sortino Ratio is calculated as follows:

# Calculate Sortino Ratio
Rp = 0.12  # Portfolio Return (12%)
Rf = 0.03  # Risk-Free Rate (3%)
sigma_d = 0.10  # Downside Deviation (10%)

sortino_ratio = (Rp - Rf) / sigma_d
print(f"Sortino Ratio: {sortino_ratio:.2f}")  # Output the Sortino Ratio

Output:

Sortino Ratio: 0.90

📌 A Sortino Ratio of 0.90 means that for every 1 unit of downside risk, the portfolio generates 0.90 units of excess return.


📌 How to Interpret the Sortino Ratio?

Sortino RatioInvestment Performance
< 0Poor investment, underperforms risk-free rate ❌
0 ~ 1High risk, unstable returns ⚠️
1 ~ 2Good investment, balanced risk-return ✅
2 ~ 3Excellent investment, strong returns vs. risk 🌟
> 3Outstanding investment, low-risk high-reward 🚀

📌 Typically, a Sortino Ratio above 1 is considered good, above 2 is excellent.


📌 Real-World Applications of the Sortino Ratio

📍 1. Selecting the Best Investment Fund

Investors can use the Sortino Ratio to choose funds with better risk control:

  • Fund A: Annual Return = 15%, Downside Deviation = 12%, Sortino Ratio = 1.00
  • Fund B: Annual Return = 12%, Downside Deviation = 6%, Sortino Ratio = 1.50
  • Fund C: Annual Return = 18%, Downside Deviation = 15%, Sortino Ratio = 0.90

📌 Even though Fund C has the highest return, its high downside risk makes it less attractive. Fund B has the best risk-adjusted return.


📍 2. Comparing Different Asset Classes

The Sortino Ratio is useful for comparing different asset classes:

  • Bitcoin (BTC) Sortino Ratio = 1.2
  • S&P 500 ETF Sortino Ratio = 1.5
  • U.S. Treasury Bonds ETF Sortino Ratio = 2.5

📌 Treasury Bonds ETF has the highest Sortino Ratio due to its minimal downside risk, while Bitcoin has more volatility.


📍 3. Quantitative Trading & Hedge Funds

  • Quantitative funds optimize Sortino Ratios by adjusting exposure dynamically
  • Hedge funds focus on downside risk to ensure minimal drawdowns

📌 Many hedge funds prioritize the Sortino Ratio over the Sharpe Ratio because it emphasizes “risk control” rather than “volatility reduction.”


📌 Sortino Ratio vs. Sharpe Ratio: Which is Better?

MetricSharpe RatioSortino Ratio
Volatility CalculationMeasures both upside and downside 📉📈Measures only downside risk 📉
Best Use CaseGeneral investmentsRisk-focused investments
Asset SuitabilityIndex funds, stocksHedge funds, low-risk assets
Main WeaknessMisjudges high-volatility assetsMay ignore high-reward volatility

📌 If an investment has high positive volatility but strong returns, the Sortino Ratio is a better metric for evaluating its true potential.


📌 Conclusion

🔹 The Sortino Ratio is a more refined metric for evaluating risk-adjusted returns, focusing on downside risk.
🔹 It is superior to the Sharpe Ratio for evaluating low-risk investments, hedge funds, and risk-averse strategies.
🔹 It helps in fund selection, asset allocation, and trading strategy optimization, especially for risk-conscious investors.
🔹 For investors looking to minimize risk while maximizing stable returns, the Sortino Ratio is a better choice than the Sharpe Ratio!

Bottom line: If you care more about “how much you could lose” rather than “how much it fluctuates,” the Sortino Ratio is the metric you should focus on! 📈💡


💡 Do you prefer the Sharpe Ratio or the Sortino Ratio when evaluating investments? Share your thoughts in the comments! 📊🚀

后记

2025年2月25日20点59分于上海,在GPT 4o大模型辅助下完成。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2306665.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

prometheus+node_exporter+grafana监控K8S信息

prometheusnode_exportergrafana监控K8S 1.prometheus部署2.node_exporter部署3.修改prometheus配置文件4.grafana部署 1.prometheus部署 包下载地址&#xff1a;https://prometheus.io/download/ 将包传至/opt 解压 tar xf prometheus-2.53.3.linux-amd64.tar.gz 移动到…

IDEA关闭SpringBoot程序后仍然占用端口的排查与解决

IDEA关闭SpringBoot程序后仍然占用端口的排查与解决 问题描述 在使用 IntelliJ IDEA 开发 Spring Boot 应用时&#xff0c;有时即使关闭了应用&#xff0c;程序仍然占用端口&#xff08;例如&#xff1a;4001 端口&#xff09;。这会导致重新启动应用时出现端口被占用的错误&a…

山东大学软件学院nosql实验三

实验题目&#xff1a; 用Java做简单查询(2学时) 实验内容 用API方式&#xff0c;做简单查询。 实验要求 在以下要求中选择至少2个&#xff0c;使用Java语言实现数据查询&#xff0c;最终把数据输出到前端界面。 &#xff08;1&#xff09;找出年龄小于20岁的所有学生 &…

零样本学习 zero-shot

1 是什么 2 如何利用零样本学习进行跨模态迁移&#xff1f; demo代码 安装clip pip install ftfy regex tqdm pip install githttps://github.com/openai/CLIP.git import torch import clip from PIL import Image# 加载 CLIP 模型 device "cuda" if torch.cuda.i…

《深度学习实战》第3集:循环神经网络(RNN)与序列建模

第3集&#xff1a;循环神经网络&#xff08;RNN&#xff09;与序列建模 引言 在深度学习领域&#xff0c;处理序列数据&#xff08;如文本、语音、时间序列等&#xff09;是一个重要的研究方向。传统的全连接网络和卷积神经网络&#xff08;CNN&#xff09;难以直接捕捉序列中…

mac下载MAMP6.8.1

因为mac的小皮面板没有php7.4了 链接&#xff1a;c9cc270e6961c17c.dmg官方版下载丨最新版下载丨绿色版下载丨APP下载-123云盘 鹅选一 附上大佬写的教程&#xff1a;MAMP PRO教程 - 牛奔 - 博客园

BUU41 [GYCTF2020]FlaskApp1【SSTI】

题目&#xff1a; 加密处没啥事&#xff0c;但是解密的地方提交{{7*7}}就会返回报错界面&#xff0c;顺便把代码也爆出来了 text_decode base64.b64decode(text.encode()) 先将字符串 text编码为字节对象&#xff0c;然后使用 base64.b64decode 函数对这个字节对象进行 Base…

今日运维之-Mac笔记本python环境问题

1. 问题&#xff1a;MAC升级系统后git报错&#xff1f; Error: Cant create update lock in /usr/local/var/homebrew/locks! Fix permissions by running:sudo chown -R $(whoami) /usr/local/var/homebrew Traceback (most recent call last):11: from /usr/local/Homebrew/…

易基因:RNA甲基化修饰和R-loop的交叉调控:从分子机制到临床意义|深度综述

大家好&#xff0c;这里是专注表观组学十余年&#xff0c;领跑多组学科研服务的易基因。 R-loop&#xff08;RNA-DNA杂合结构&#xff09;是转录调控、DNA复制和修复等关键细胞过程的重要组成部分。但R-loop异常积累可能会破坏基因组完整性&#xff0c;从而导致多种疾病的发生…

NLP的预处理数据

处理文本数据的主要工具是Tokenizer。Tokenizer根据一组规则将文本拆分为tokens。然后将这些tokens转换为数字&#xff0c;然后转换为张量&#xff0c;成为模型的输入。模型所需的任何附加输入都由Tokenizer添加。 如果您计划使用预训练模型&#xff0c;重要的是使用与之关联的…

Linux相关知识(文件系统、目录树、权限管理)和Shell相关知识(字符串、数组)

仅供自学&#xff0c;请去支持javaGuide原版书籍。 1.Linux 1.1.概述 Linux是一种类Unix系统。 严格来讲&#xff0c;Linux 这个词本身只表示 Linux内核&#xff0c;单独的 Linux 内核并不能成为一个可以正常工作的操作系统。所以&#xff0c;就有了各种 Linux 发行版&#…

7种内外网数据交换方案全解析 哪种安全、高效、合规?

内外网数据交换方案主要解决了企业跨网络数据传输中的安全、效率与合规性问题。通过采用先进的加密技术、高效的数据传输协议以及严格的审批和审计机制&#xff0c;该方案确保了数据在内外网之间的安全交换&#xff0c;同时提高了传输效率&#xff0c;并满足了企业对数据合规性…

基于 Python 的项目管理系统开发

基于 Python 的项目管理系统开发 一、引言 在当今快节奏的工作环境中&#xff0c;有效的项目管理对于项目的成功至关重要。借助信息技术手段开发项目管理系统&#xff0c;能够显著提升项目管理的效率和质量。Python 作为一种功能强大、易于学习且具有丰富库支持的编程语言&…

电子科技大学考研复习经验分享

电子科技大学考研复习经验分享 本人情况&#xff1a;本科就读于电科软院&#xff0c;24年2月开始了解考研&#xff0c;24年3月开始数学&#xff0c;9月决定考本院&#xff08;开始全天候图书馆学习&#xff09;并开始专业课学习&#xff0c;11月底开始政治学习&#xff0c;最后…

DeepSeek技术提升,Linux本地部署全攻略

文章目录 1.Ollama部署1.1 安装Ollama1.2 配置Ollama1.3 下载deepseek模型 2.安装MaxKB可视化页面2.1 下载镜像2.2 运行容器2.3 配置MaxKB 3.配置Chatbox AI可视化页面 1.Ollama部署 Ollama下载地址 根据自己需求选择版本下载 1.1 安装Ollama 下载安装脚本并执行 curl -fs…

在 Mac mini M2 上 MaxKb配置ollama,API域名无效的解决方案

环境说明 docker方案安装与使用的maxkb 本地ollama安装deekseek r1 解决方案 参考https://bbs.fit2cloud.com/t/topic/4165 mac m1用户&#xff0c;根据github的以下回复&#xff0c;成功绑定域名api 如果你想调用本地的ollama 中的大模型&#xff0c;域名试试&#xff1a;…

Java进阶(vue基础)

目录 1.vue简单入门 ?1.1.创建一个vue程序 1.2.使用Component模板(组件&#xff09; 1.3.引入AXOIS ?1.4.vue的Methods&#xff08;方法&#xff09; 和?compoted&#xff08;计算&#xff09; 1.5.插槽slot 1.6.创建自定义事件? 2.Vue脚手架安装? 3.Element-UI的…

B站pwn教程笔记-3

栈知识、部分保护措施 GDB显示的栈地址有时候并不是可靠的地址&#xff0c;gdb也是用特殊的进程映像来拿地址的。且gdb默认关闭栈地址随机化。但是&#xff0c;偏移量是没有错误的。目前还没学到咋解决 第一个栈帧是main函数栈帧&#xff0c;之前的一些系统函数什么的没有栈帧…

论文笔记(七十二)Reward Centering(四)

Reward Centering&#xff08;四&#xff09; 文章概括摘要附录A 伪代码 文章概括 引用&#xff1a; article{naik2024reward,title{Reward Centering},author{Naik, Abhishek and Wan, Yi and Tomar, Manan and Sutton, Richard S},journal{arXiv preprint arXiv:2405.09999…

【Python量化金融实战】-第1章:Python量化金融概述:1.1量化金融的定义与发展历程

本小节学习建议&#xff1a;掌握Python编程、统计学&#xff08;时间序列分析&#xff09;、金融学基础&#xff08;资产定价理论&#xff09;三者结合&#xff0c;是进入量化领域的核心路径。 &#x1f449; 点击关注不迷路 &#x1f449; 点击关注不迷路 文章目录 1.1 量化金…