《深度学习实战》第3集:循环神经网络(RNN)与序列建模

news2025/2/27 2:58:20

第3集:循环神经网络(RNN)与序列建模


引言

在深度学习领域,处理序列数据(如文本、语音、时间序列等)是一个重要的研究方向。传统的全连接网络和卷积神经网络(CNN)难以直接捕捉序列中的时序依赖关系,而循环神经网络(Recurrent Neural Network, RNN)应运而生。它通过引入“记忆”机制,能够有效建模序列数据的动态特性。然而,随着任务复杂度的提升,RNN 的局限性也逐渐显现,这促使了 LSTM 和 GRU 等改进模型的诞生。本集将深入探讨 RNN 的基本原理及其改进版本,并结合实战项目展示其应用价值。最后,我们还将讨论 Transformer 如何逐步取代 RNN 成为序列建模的新宠。


1. RNN 的基本原理与局限性

1.1 什么是 RNN?

RNN(Recurrent Neural Network)是一类适合处理序列数据的神经网络。与传统的前馈神经网络不同,RNN具有循环结构,可以将前一个时刻的信息传递到当前时刻,从而记忆序列中的历史信息。

RNN的工作原理:

  • 在每个时间步,RNN通过接收当前输入和上一时刻的隐藏状态,更新当前的隐藏状态,并计算当前的输出。
  • 这种结构允许RNN处理具有时序依赖关系的数据,如语音、文本和时间序列。

基本原理
RNN 的核心思想是通过一个循环结构,将当前时刻的输入与上一时刻的隐藏状态结合起来,从而实现对序列信息的记忆。具体来说,RNN 的计算公式如下:

h t = σ ( W h h t − 1 + W x x t + b ) h_t = \sigma(W_h h_{t-1} + W_x x_t + b) ht=σ(Whht1+Wxxt+b)

其中:

  • h t 是当前时刻的隐藏状态; h_t 是当前时刻的隐藏状态; ht是当前时刻的隐藏状态;
  • x t 是当前时刻的输入; x_t 是当前时刻的输入; xt是当前时刻的输入;
  • W h 和 W x 是权重矩阵; W_h 和 W_x 是权重矩阵; WhWx是权重矩阵;
  • b 是偏置项; b 是偏置项; b是偏置项;
  • σ 是激活函数(通常为 t a n h 或 R e L U )。 \sigma 是激活函数(通常为 tanh 或 ReLU)。 σ是激活函数(通常为tanhReLU)。

通过这种递归计算,RNN 能够捕捉序列中的时序依赖关系。

局限性
尽管 RNN 在理论上可以处理任意长度的序列,但在实际训练中存在以下问题:

  1. 梯度消失/爆炸问题:由于反向传播过程中梯度需要通过时间维度传递,长序列会导致梯度指数级缩小或放大。当序列较长时,RNN的梯度容易在反向传播过程中消失或爆炸,使得模型难以学习长期依赖关系
  2. 长期依赖问题:RNN 难以记住距离较远的信息,因为隐藏状态会随着时间被覆盖或遗忘。RNN在捕捉较长时间依赖时效果较差,尤其是在长序列中,它无法保持足够的信息。

这些问题限制了 RNN 在复杂任务中的表现。


1.2 LSTM 和 GRU 的改进

为了克服 RNN 的局限性,研究者提出了两种改进模型:LSTM(Long Short-Term Memory)长短期记忆网络和 GRU(Gated Recurrent Unit)门控循环单元。它们通过引入门控机制,增强了模型对长期依赖的建模能力。

  • LSTM(长短期记忆网络)
    在这里插入图片描述

LSTM通过引入“记忆单元”和“门控机制”来控制信息流动,克服了传统RNN在长时间序列建模中的不足。LSTM的核心组件包括:

  • 遗忘门:决定当前时间步的记忆单元中哪些信息需要遗忘。
  • 输入门:控制当前时间步的输入信息如何更新到记忆单元中。
  • 输出门:控制记忆单元的信息如何影响输出。

通过这些门控机制,LSTM能够有效地保持长期依赖信息,避免梯度消失问题。

  • GRU(门控循环单元)
    在这里插入图片描述

GRU是LSTM的简化版本,它将LSTM中的遗忘门和输入门合并为一个更新门,减少了参数量,使得训练更加高效。GRU的结构较LSTM更为简单,但在很多任务上,GRU与LSTM的表现相差不大。

LSTM 公式解释
LSTM 引入了三个门(输入门、遗忘门、输出门)以及一个细胞状态(cell state),用于控制信息的流动。其核心公式如下:

  1. 遗忘门:决定哪些信息需要从细胞状态中丢弃。
    f t = σ ( W f ⋅ [ h t − 1 , x t ] + b f ) f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f) ft=σ(Wf[ht1,xt]+bf)

  2. 输入门:决定哪些新信息需要添加到细胞状态中。
    i t = σ ( W i ⋅ [ h t − 1 , x t ] + b i ) i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i) it=σ(Wi[ht1,xt]+bi)
    C ~ t = tanh ⁡ ( W C ⋅ [ h t − 1 , x t ] + b C ) \tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C) C~t=tanh(WC[ht1,xt]+bC)

  3. 更新细胞状态
    C t = f t ⊙ C t − 1 + i t ⊙ C ~ t C_t = f_t \odot C_{t-1} + i_t \odot \tilde{C}_t Ct=ftCt1+itC~t

  4. 输出门:决定当前时刻的隐藏状态。
    o t = σ ( W o ⋅ [ h t − 1 , x t ] + b o ) o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o) ot=σ(Wo[ht1,xt]+bo)
    h t = o t ⊙ tanh ⁡ ( C t ) h_t = o_t \odot \tanh(C_t) ht=ottanh(Ct)

GRU公式解释
GRU 是 LSTM 的简化版本,将遗忘门和输入门合并为更新门,并移除了单独的细胞状态。其核心公式如下:

  1. 更新门
    z t = σ ( W z ⋅ [ h t − 1 , x t ] + b z ) z_t = \sigma(W_z \cdot [h_{t-1}, x_t] + b_z) zt=σ(Wz[ht1,xt]+bz)

  2. 重置门
    r t = σ ( W r ⋅ [ h t − 1 , x t ] + b r ) r_t = \sigma(W_r \cdot [h_{t-1}, x_t] + b_r) rt=σ(Wr[ht1,xt]+br)

  3. 候选隐藏状态
    h ~ t = tanh ⁡ ( W ⋅ [ r t ⊙ h t − 1 , x t ] + b ) \tilde{h}_t = \tanh(W \cdot [r_t \odot h_{t-1}, x_t] + b) h~t=tanh(W[rtht1,xt]+b)

  4. 最终隐藏状态
    h t = ( 1 − z t ) ⊙ h t − 1 + z t ⊙ h ~ t h_t = (1 - z_t) \odot h_{t-1} + z_t \odot \tilde{h}_t ht=(1zt)ht1+zth~t

LSTM 和 GRU 的门控机制使得它们能够更好地捕捉长期依赖关系,同时缓解了梯度消失问题。


1.3 序列建模的应用场景

RNN 及其变体广泛应用于以下领域:

  1. 语言建模:语言建模是自然语言处理中的一个重要任务,目标是根据前文的单词预测下一个单词。RNN、LSTM和GRU在语言建模中表现优异,能够捕捉句子中各个单词之间的时序依赖关系,可预测下一个单词的概率分布,常用于机器翻译、文本生成等任务。
  2. 时间序列预测:时间序列预测是使用历史数据预测未来的一个典型应用场景。例如,在股票市场中,我们希望基于历史价格数据预测未来的股价趋势。RNN、LSTM和GRU被广泛应用于金融领域的时间序列预测任务,也常用于天气预测等领域。
  3. 语音识别:将音频信号转化为文本。
  4. 视频分析:捕捉视频帧之间的时序关系。

2. 实战项目:使用 LSTM 预测股票价格趋势

2.1 项目背景

我们将使用LSTM模型来预测股票价格趋势。数据来源于Yahoo Finance,我们将使用过去的股票数据来预测未来几天的股票价格变化。

2.2 数据准备

首先,安装所需的库:

pip install yfinance pandas numpy matplotlib tensorflow scikit-learn

接着,获取股票数据并进行预处理:

import yfinance as yf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler

# 获取股票数据
data = yf.download('AAPL', start='2010-01-01', end='2023-01-01', auto_adjust=True)

# 使用收盘价
closing_prices = data['Close'].values.reshape(-1, 1)

# 数据归一化
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(closing_prices)

# 创建训练数据(使用过去60天的数据预测下一天的价格)
def create_dataset(data, time_step=60):
    X, y = [], []
    for i in range(len(data)-time_step-1):
        X.append(data[i:(i+time_step), 0])
        y.append(data[i + time_step, 0])
    return np.array(X), np.array(y)

X, y = create_dataset(scaled_data)

# 重塑输入数据的形状为 [样本数, 时间步长, 特征数]
X = X.reshape(X.shape[0], X.shape[1], 1)

# 划分训练集和测试集
train_size = int(len(X) * 0.8)
X_train, X_test = X[:train_size], X[train_size:]
y_train, y_test = y[:train_size], y[train_size:]

2.3 构建LSTM模型

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout

# 构建LSTM模型
model = Sequential()
model.add(LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1], 1)))
model.add(Dropout(0.2))
model.add(LSTM(units=50, return_sequences=False))
model.add(Dropout(0.2))
model.add(Dense(units=1))

# 编译模型
model.compile(optimizer='adam', loss='mean_squared_error')

# 训练模型
model.fit(X_train, y_train, epochs=10, batch_size=32)

2.4 预测与可视化

# 使用模型进行预测
predictions = model.predict(X_test)

# 反归一化预测结果
predictions = scaler.inverse_transform(predictions)
y_test = scaler.inverse_transform(y_test.reshape(-1, 1))

# 可视化结果
plt.figure(figsize=(12, 6))
plt.plot(y_test, color='blue', label='Actual Stock Price')
plt.plot(predictions, color='red', label='Predicted Stock Price')
plt.title('Stock Price Prediction using LSTM')
plt.xlabel('Time')
plt.ylabel('Stock Price')
plt.legend()
plt.show()

** 代码汇总:**

import yfinance as yf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler

# 获取股票数据
data = yf.download('AAPL', start='2010-01-01', end='2023-01-01', auto_adjust=True)


if data.empty:
    print("No data found, check the stock symbol or try again later.")
else:

    # 使用收盘价
    closing_prices = data['Close'].values.reshape(-1, 1)

    # 数据归一化
    scaler = MinMaxScaler(feature_range=(0, 1))
    scaled_data = scaler.fit_transform(closing_prices)

    # 创建训练数据(使用过去60天的数据预测下一天的价格)
    def create_dataset(data, time_step=60):
        X, y = [], []
        for i in range(len(data)-time_step-1):
            X.append(data[i:(i+time_step), 0])
            y.append(data[i + time_step, 0])
        return np.array(X), np.array(y)

    X, y = create_dataset(scaled_data)

    # 重塑输入数据的形状为 [样本数, 时间步长, 特征数]
    X = X.reshape(X.shape[0], X.shape[1], 1)

    # 划分训练集和测试集
    train_size = int(len(X) * 0.8)
    X_train, X_test = X[:train_size], X[train_size:]
    y_train, y_test = y[:train_size], y[train_size:]


    from tensorflow.keras.models import Sequential
    from tensorflow.keras.layers import LSTM, Dense, Dropout

    # 构建LSTM模型
    model = Sequential()
    model.add(LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1], 1)))
    model.add(Dropout(0.2))
    model.add(LSTM(units=50, return_sequences=False))
    model.add(Dropout(0.2))
    model.add(Dense(units=1))

    # 编译模型
    model.compile(optimizer='adam', loss='mean_squared_error')

    # 训练模型
    model.fit(X_train, y_train, epochs=10, batch_size=32)

    # 使用模型进行预测
    predictions = model.predict(X_test)

    # 反归一化预测结果
    predictions = scaler.inverse_transform(predictions)
    y_test = scaler.inverse_transform(y_test.reshape(-1, 1))

    # 可视化结果
    plt.figure(figsize=(12, 6))
    plt.plot(y_test, color='blue', label='Actual Stock Price')
    plt.plot(predictions, color='red', label='Predicted Stock Price')
    plt.title('Stock Price Prediction using LSTM')
    plt.xlabel('Time')
    plt.ylabel('Stock Price')
    plt.legend()
    plt.show()

代码输出结果:

[*********************100%***********************]  1 of 1 completed
2025-02-25 22:43:23.883004: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2025-02-25 22:43:26.821365: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2025-02-25 22:43:29.733373: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
D:\python_projects\lstm_demo\Lib\site-packages\keras\src\layers\rnn\rnn.py:200: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.
  super().__init__(**kwargs)
Epoch 1/10
81/81 ━━━━━━━━━━━━━━━━━━━━ 4s 19ms/step - loss: 0.0037
Epoch 2/10
81/81 ━━━━━━━━━━━━━━━━━━━━ 2s 19ms/step - loss: 3.0320e-04
Epoch 3/10
81/81 ━━━━━━━━━━━━━━━━━━━━ 2s 19ms/step - loss: 2.5178e-04
Epoch 4/10
81/81 ━━━━━━━━━━━━━━━━━━━━ 2s 19ms/step - loss: 2.8054e-04
Epoch 5/10
81/81 ━━━━━━━━━━━━━━━━━━━━ 2s 19ms/step - loss: 2.1884e-04
Epoch 6/10
81/81 ━━━━━━━━━━━━━━━━━━━━ 2s 19ms/step - loss: 1.9784e-04
Epoch 7/10
81/81 ━━━━━━━━━━━━━━━━━━━━ 2s 19ms/step - loss: 1.7942e-04
Epoch 8/10
81/81 ━━━━━━━━━━━━━━━━━━━━ 2s 19ms/step - loss: 1.9470e-04
Epoch 9/10
81/81 ━━━━━━━━━━━━━━━━━━━━ 2s 19ms/step - loss: 1.5350e-04
Epoch 10/10
81/81 ━━━━━━━━━━━━━━━━━━━━ 2s 19ms/step - loss: 2.8230e-04
21/21 ━━━━━━━━━━━━━━━━━━━━ 1s 16ms/step

输出预测对比图片:
在这里插入图片描述

2.5 图解RNN和LSTM

  1. RNN 展开图

    在这里插入图片描述
    在这里插入图片描述

  2. LSTM 单元结构
    ( LSTM 单元结构图,标注输入门、遗忘门、输出门和细胞状态。)
    在这里插入图片描述


3. 前沿关联:Transformer 在序列建模中的崛起

尽管LSTM和GRU在序列建模中取得了显著成果,但随着Transformer模型的出现,序列建模的格局发生了变化。Transformer模型通过自注意力机制能够并行处理序列数据,且在处理长距离依赖时更加高效。如今,Transformer模型已广泛应用于自然语言处理任务,如BERT和GPT系列模型。Transformer 模型凭借其自注意力机制(Self-Attention)彻底改变了序列建模领域。相比于 RNN,Transformer 具有以下优势:

  1. 并行化训练:无需按时间顺序处理序列,大幅提高了训练效率。
  2. 长程依赖建模:自注意力机制能够直接捕捉全局依赖关系。
  3. 广泛应用:Transformer 已成为 GPT、BERT 等大模型的核心架构。

尽管如此,RNN 仍然在某些特定任务(如实时序列处理)中具有不可替代的价值。理解 RNN 的原理及其改进版本,有助于我们更好地掌握现代深度学习技术的发展脉络。


总结

本集聚焦于循环神经网络(RNN)的基本原理及其改进模型 LSTM 和 GRU,并通过实战项目展示了它们在时间序列预测中的应用。同时,我们也探讨了 Transformer 的崛起如何推动序列建模进入新时代。下一集,我们将深入探讨 Transformer 的工作原理及其在自然语言处理中的革命性应用。敬请期待!


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2306658.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

mac下载MAMP6.8.1

因为mac的小皮面板没有php7.4了 链接:c9cc270e6961c17c.dmg官方版下载丨最新版下载丨绿色版下载丨APP下载-123云盘 鹅选一 附上大佬写的教程:MAMP PRO教程 - 牛奔 - 博客园

BUU41 [GYCTF2020]FlaskApp1【SSTI】

题目: 加密处没啥事,但是解密的地方提交{{7*7}}就会返回报错界面,顺便把代码也爆出来了 text_decode base64.b64decode(text.encode()) 先将字符串 text编码为字节对象,然后使用 base64.b64decode 函数对这个字节对象进行 Base…

今日运维之-Mac笔记本python环境问题

1. 问题:MAC升级系统后git报错? Error: Cant create update lock in /usr/local/var/homebrew/locks! Fix permissions by running:sudo chown -R $(whoami) /usr/local/var/homebrew Traceback (most recent call last):11: from /usr/local/Homebrew/…

易基因:RNA甲基化修饰和R-loop的交叉调控:从分子机制到临床意义|深度综述

大家好,这里是专注表观组学十余年,领跑多组学科研服务的易基因。 R-loop(RNA-DNA杂合结构)是转录调控、DNA复制和修复等关键细胞过程的重要组成部分。但R-loop异常积累可能会破坏基因组完整性,从而导致多种疾病的发生…

NLP的预处理数据

处理文本数据的主要工具是Tokenizer。Tokenizer根据一组规则将文本拆分为tokens。然后将这些tokens转换为数字,然后转换为张量,成为模型的输入。模型所需的任何附加输入都由Tokenizer添加。 如果您计划使用预训练模型,重要的是使用与之关联的…

Linux相关知识(文件系统、目录树、权限管理)和Shell相关知识(字符串、数组)

仅供自学,请去支持javaGuide原版书籍。 1.Linux 1.1.概述 Linux是一种类Unix系统。 严格来讲,Linux 这个词本身只表示 Linux内核,单独的 Linux 内核并不能成为一个可以正常工作的操作系统。所以,就有了各种 Linux 发行版&#…

7种内外网数据交换方案全解析 哪种安全、高效、合规?

内外网数据交换方案主要解决了企业跨网络数据传输中的安全、效率与合规性问题。通过采用先进的加密技术、高效的数据传输协议以及严格的审批和审计机制,该方案确保了数据在内外网之间的安全交换,同时提高了传输效率,并满足了企业对数据合规性…

基于 Python 的项目管理系统开发

基于 Python 的项目管理系统开发 一、引言 在当今快节奏的工作环境中,有效的项目管理对于项目的成功至关重要。借助信息技术手段开发项目管理系统,能够显著提升项目管理的效率和质量。Python 作为一种功能强大、易于学习且具有丰富库支持的编程语言&…

电子科技大学考研复习经验分享

电子科技大学考研复习经验分享 本人情况:本科就读于电科软院,24年2月开始了解考研,24年3月开始数学,9月决定考本院(开始全天候图书馆学习)并开始专业课学习,11月底开始政治学习,最后…

DeepSeek技术提升,Linux本地部署全攻略

文章目录 1.Ollama部署1.1 安装Ollama1.2 配置Ollama1.3 下载deepseek模型 2.安装MaxKB可视化页面2.1 下载镜像2.2 运行容器2.3 配置MaxKB 3.配置Chatbox AI可视化页面 1.Ollama部署 Ollama下载地址 根据自己需求选择版本下载 1.1 安装Ollama 下载安装脚本并执行 curl -fs…

在 Mac mini M2 上 MaxKb配置ollama,API域名无效的解决方案

环境说明 docker方案安装与使用的maxkb 本地ollama安装deekseek r1 解决方案 参考https://bbs.fit2cloud.com/t/topic/4165 mac m1用户,根据github的以下回复,成功绑定域名api 如果你想调用本地的ollama 中的大模型,域名试试:…

Java进阶(vue基础)

目录 1.vue简单入门 ?1.1.创建一个vue程序 1.2.使用Component模板(组件) 1.3.引入AXOIS ?1.4.vue的Methods(方法) 和?compoted(计算) 1.5.插槽slot 1.6.创建自定义事件? 2.Vue脚手架安装? 3.Element-UI的…

B站pwn教程笔记-3

栈知识、部分保护措施 GDB显示的栈地址有时候并不是可靠的地址,gdb也是用特殊的进程映像来拿地址的。且gdb默认关闭栈地址随机化。但是,偏移量是没有错误的。目前还没学到咋解决 第一个栈帧是main函数栈帧,之前的一些系统函数什么的没有栈帧…

论文笔记(七十二)Reward Centering(四)

Reward Centering(四) 文章概括摘要附录A 伪代码 文章概括 引用: article{naik2024reward,title{Reward Centering},author{Naik, Abhishek and Wan, Yi and Tomar, Manan and Sutton, Richard S},journal{arXiv preprint arXiv:2405.09999…

【Python量化金融实战】-第1章:Python量化金融概述:1.1量化金融的定义与发展历程

本小节学习建议:掌握Python编程、统计学(时间序列分析)、金融学基础(资产定价理论)三者结合,是进入量化领域的核心路径。 👉 点击关注不迷路 👉 点击关注不迷路 文章目录 1.1 量化金…

C#快速调用DeepSeek接口,winform接入DeepSeek查询资料 C#零门槛接入DeepSeek C#接入DeepSeek源代码下载

下载地址<------完整源码 在数字化转型加速的背景下&#xff0c;企业应用系统对智能服务的需求日益增长。DeepSeek作为先进的人工智能服务平台&#xff0c;其自然语言处理、图像识别等核心能力可显著提升业务系统的智能化水平。传统开发模式下&#xff0c;C#开发者需要耗费大…

Para-Lane: 首个真实世界多车道数据集,目的评估自动驾驶系统中的新型视角合成能力。

2025-02-22&#xff0c;阿里巴巴集团菜鸟自动驾驶实验室和百度研究院共同创建了一个名为 Para-Lane 的真实世界多车道数据集。该数据集目的评估自动驾驶系统中的新型视角合成&#xff08;NVS&#xff09;能力&#xff0c;通过提供大量真实世界的数据&#xff0c;弥补了现有合成…

[算法--前缀和] 一维前缀和

目录 1. 前缀和: 是一种对暴力求解的优化.2. 前缀和? 如何利用前面的计算结果提高效率?3. 如何预处理前缀和数组(如何让处理前缀和数组的复杂度是O(N))?接下来, 我们开启一个新的专题 -> 前缀和, 第一道是模板题, 一维前缀和 1. 前缀和: 是一种对暴力求解的优化. 前缀和…

《零基础学会!如何用 sql+Python 绘制柱状图和折线图,数据可视化一看就懂》

在数据驱动的时代&#xff0c;MySQL 是最常用的关系型数据库管理系统之一&#xff0c;广泛应用于各类数据存储和处理场景。数据分析的过程不仅仅是收集数据&#xff0c;还包括数据的清洗、转换、查询以及最终的报告和可视化。在本文中&#xff0c;我们将通过实际案例来介绍如何…

【算法系列】归并排序详解

文章目录 归并排序详解1. 基本原理1.1 分治法策略1.2 归并排序步骤1.3 图解示例 2. 时间复杂度与空间复杂度2.1 时间复杂度2.2 空间复杂度 3. 稳定性4. Java 实现示例5. 归并排序的优点与缺点5.1 优点5.2 缺点 6. 总结 归并排序详解 归并排序&#xff08;Merge Sort&#xff0…