20250221 NLP

news2025/2/26 6:13:53

1.向量和嵌入

https://zhuanlan.zhihu.com/p/634237861

encoder的输入就是向量,提前嵌入为向量

二.多模态文本嵌入向量过程


1.文本预处理

文本tokenizer之前需要预处理吗?

是的,文本tokenizer之前通常需要对文本进行预处理。预处理步骤可以包括以下内容:

1. 标准化

  • 大小写转换:将文本转换为统一大小写(通常是小写)以减少词汇表大小。
  • 去除标点符号:除去不必要的标点符号,保持文本的简洁。

2. 分词准备

  • 去除空白:清除多余的空格或换行符。
  • 特殊字符处理:处理特殊字符或符号,以确保分词的准确性。

3. 其他处理

  • 停用词过滤:根据任务需要,可以去除常见但无意义的停用词(如“的”、“和”等)。
  • 词干提取或词形还原:将单词还原到其基本形式,以统一表示。

这些预处理步骤帮助提高tokenizer的效率和准确性,确保生成的token序列更具一致性和可用性。

当然,这里是一个简单的文本预处理示例:

原始文本

"What is the animal?"

预处理步骤

  1. 大小写转换

    • 将文本转换为小写:
      "what is the animal?"
      
  2. 去除标点符号

    • 去掉问号:
      "what is the animal"
      
  3. 去除多余空格

    • 确保没有多余空格:
      "what is the animal"
      
  4. 停用词过滤(可选)

    • 如果需要,可以去掉停用词(如"is", "the"),具体取决于任务需求:
      "what animal"
      
  5. 词干提取或词形还原(可选)

    • 将单词还原到词干形式(如“running”变为“run”):
      "what animal"
      

结果

经过预处理,文本更为简洁,适合于tokenization和后续处理。预处理后的文本可以被tokenizer进一步分割为token序列,如:

["what", "animal"]

这些步骤帮助确保tokenizer的输出一致且易于模型处理。

2.tokenizer 字节对编码

例如BPE、WordPiece等分词模型构建词汇表(['low', 'est']),添加自增索引。

BPE(Byte Pair Encoding)本身不需要训练,但它确实需要一个过程来构建词汇表。这涉及从文本中统计频率和合并字符对。以下是一个示例来说明这个过程:

BPE构建过程示例

假设文本数据
"banana", "bandana"
步骤1:初始化
  • 将每个单词分解为字符序列:
    • b a n a n a
    • b a n d a n a
步骤2:统计频率
  • 统计所有相邻字符对的出现频率:
    • 'b a':2次
    • 'a n':3次
    • 'n a':3次
    • 'a n':3次
    • 'n d':1次
    • 'd a':1次
步骤3:合并高频对
  • 合并出现频率最高的字符对 'a n':
    • b an a n a
    • b an d a n a
步骤4:重复过程
  • 再次统计字符对:

    • 'b an':2次
    • 'an a':2次
    • 'n a':2次
    • 'an d':1次
    • 'd a':1次
  • 合并 'an':

    • ban a n a
    • ban d a n a
  • 继续合并,直到达到预定义的词汇表大小。

最终词汇表

  • 通过多次合并,最终得到一个包含字符和子词的词汇表:
    ['b', 'a', 'n', 'd', 'an', 'ban']
    

总结

  • BPE通过合并高频字符对,构建出一个高效的子词词汇表。
  • 这个过程不需要训练参数,但需要从数据中统计和合并字符对以创建词汇表。

3.embedding

通过子词索引在嵌入表中查找对应的嵌入向量。相似的语义信息的挨着。

文本嵌入表需要训练吗?还是LLM预训练模型自带的

文本嵌入表通常是需要训练的,但它可以是LLM预训练模型的一部分。在大型语言模型(LLM)的预训练过程中,嵌入表会随着模型其他参数一起优化,以便更好地捕捉词汇的语义信息。

两种常见情况

  1. 预训练模型自带

    • 许多大型语言模型在发布时已经包含了训练好的文本嵌入表。
    • 使用这些模型时,嵌入表可以直接应用于新任务。
  2. 自定义训练

    • 如果你使用自己的数据进行微调或训练新的模型,文本嵌入表会在训练过程中更新。
    • 嵌入表的参数会随着其他模型参数一起通过反向传播进行优化。

总结

文本嵌入表可以是预训练模型的一部分,也可以在特定任务中通过微调进行更新。嵌入表的质量对模型理解和生成文本的能力有重要影响。

在多模态大语言模型(MLLM)中,文本嵌入表可以是静态的,也可以是动态的,具体取决于模型的设计和使用的技术。

静态嵌入

  • 定义:每个词在训练开始时被分配一个固定的向量。
  • 特征
    • 嵌入在训练过程中不随上下文变化。
    • 常用于早期的嵌入技术,如Word2Vec和GloVe。
  • 优点:计算效率高,易于实现。
  • 缺点:无法捕捉词的上下文特征和多义性。

动态嵌入

  • 定义:词的嵌入根据上下文动态生成。
  • 特征
    • 嵌入向量在每个输入实例中可能不同。
    • 使用模型如BERT、GPT等。
  • 优点:能够更好地理解上下文,处理多义词。
  • 缺点:计算复杂度较高。

在MLLM中的应用

  • 静态嵌入:在一些简单或资源受限的应用中可能仍然使用。
  • 动态嵌入:在需要深度理解和复杂推理的任务中更为常见。

总结

在现代多模态模型中,动态上下文嵌入越来越普遍,它们能够提供更丰富的语义信息,适合复杂的跨模态任务。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2306200.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

https:原理

目录 1.数据的加密 1.1对称加密 1.2非对称加密 2.数据指纹 2.1数据指纹实际的应用 3.数据加密的方式 3.1只使用对称加密 3.2只使用非对称加密 3.3双方都使用对称加密 3.4非对称加密和对称加密一起使用 4.中间人攻击 5.CA证书 5.1什么是CA证书 CA证书的验证 6.https的原理 1.数据…

数据驱动未来!天合光能与永洪科技携手开启数字化新篇章

在信息化时代的今天,企业间的竞争早就超越了传统产品与服务的范畴,新的核心竞争力即——数据处理能力和信息技术的应用。作为数据技术领域的领军者,永洪科技凭借其深厚的技术积累和丰富的行业经验,成功助力天合光能实现数字化升级…

JavaScript数据结构-模拟链表

在JavaScript中没有链表这种数据结构,但是我们可以用对象(Object)模拟链表,下面让我们先了解链表是什么。 链表(Linked List)是一种基础的数据结构,由一系列节点(Node)组成,每一个节…

tableau之网络图和弧线图

一、网络图 概念 网络图(Network Graph),也称为网络可视化,是数据可视化的一种形式,用于显示实体(节点)之间的关系(边)。这种图表通过节点和边的结构揭示数据中的复杂关…

Linux网络数据包接收:原理、流程与优化策略

在当今数字化时代,网络已成为计算机系统不可或缺的部分。无论是日常的网页浏览、文件传输,还是大规模数据中心的高效通信,网络数据包的收发都在其中扮演着重要角色。对于 Linux 系统而言,深入理解网络数据包的接收过程&#xff0c…

sklearn中的决策树-分类树:实例-分类树在合成数据集上的表现

分类树实例:分类树在合成数据集上的表现 代码分解 在不同结构的据集上测试一下决策树的效果(二分型,月亮形,环形) 导入 import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import Li…

给小米/红米手机root(工具基本为官方工具)——KernelSU篇

目录 前言准备工作下载刷机包xiaomirom下载刷机包【适用于MIUI和hyperOS】“hyper更新”微信小程序【只适用于hyperOS】 下载KernelSU刷机所需程序和驱动文件 开始刷机设置手机第一种刷机方式【KMI】推荐提取boot或init_boot分区 第二种刷机方式【GKI】不推荐 结语 前言 刷机需…

棒球和垒球区别·棒球1号位

棒球运动和垒球运动的区别主要体现在以下几个方面: 1. 用球差异:垒球比棒球大且重。棒球的直径大约是7.3厘米,重量通常在145克左右,外皮由皮革制成,质地较硬。而垒球的直径为9.7厘米,重量大约为180克左右&a…

Redis|持久化

文章目录 总体介绍RDB(Redis DataBase)官网介绍案例演示优势劣势如何检查修复 dump.rdb 文件哪些情况下会触发 RDB 快照如何禁用快照RDB 优化配置项详解小总结 AOF(Append Only File)官网介绍是什么能干嘛AOF 持久化工作流程AOF 缓…

Windows前端开发IDE选型全攻略

Windows前端开发IDE选型全攻略 一、核心IDE对比矩阵 工具名称最新版本核心优势适用场景推荐指数引用来源VS Code2.3.5轻量级/海量插件/跨平台/Git深度集成全栈开发/中小型项目⭐⭐⭐⭐⭐14WebStorm2025.1智能提示/框架深度支持/企业级调试工具大型项目/专业前端团队⭐⭐⭐⭐47…

基于Spring Boot的党员学习交流平台设计与实现(LW+源码+讲解)

专注于大学生项目实战开发,讲解,毕业答疑辅导,欢迎高校老师/同行前辈交流合作✌。 技术范围:SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容:…

【2025-02-25】基础算法:二分查找(一)

📝前言说明: ●本专栏主要记录本人的基础算法学习以及LeetCode刷题记录,主要跟随B站博主灵茶山的视频进行学习,专栏中的每一篇文章对应B站博主灵茶山的一个视频 ●题目主要为B站视频内涉及的题目以及B站视频中提到的“课后作业”。…

如何在 SpringBoot 项目使用 Redis 的 Pipeline 功能

本文是博主在批量存储聊天中用户状态和登陆信息到 Redis 缓存中时,使用到了 Pipeline 功能,并对此做出了整理。 一、Redis Pipeline 是什么 Redis 的 Pipeline 功能可以显著提升 Redis 操作的性能,性能提升的原因在于可以批量执行命令。当我…

2024年第十五届蓝桥杯青少 图形化编程(Scratch)省赛中级组真题——截取递增数

截取递增数 背景信息 递增数:如果一个大于9的正整数各个数位上的数,从左到右是逐渐变大的,那么就称这个数为递增数。 例如124、248 是递增数。 给你一个不含0的九位数,请找出从这个九位数中能截取出的所有递增数。例如:115367…

【ECMAScript6】

【ECMAScript6】 01. ES6介绍02. let和const命令03. 模板字符串04. 函数之默认值、剩余参数05. 函数之扩展运算符、箭头函数06. 箭头函数this指向和注意事项07. 解构赋值08. 扩展的对象的功能(简写)09. Symbol类型10. Set集合数据类型11. Map数据类型12.…

WebUI 部署 Ollama 可视化对话界面

文章目录 一、Node.js 安装1.系统环境查询2.官网下载nodejs 安装包3.安装 Node.js 并配置环境变量4.验证安装是否正确 二、ollama-webui 安装与配置1.代码库下载2.依赖安装3.运行 三、遇到问题与解决 一、Node.js 安装 1.系统环境查询 ubuntu20.04 系统,x86-64架构…

BMS应用软件开发 — 17 上下电控制与诊断开发 (Simulink)

目录 17.1 上下电控制流程 17.1.1 上下电流程 17.1.2 下电过程的电机放电 17.1.3 继电器状态检测 17.2 预充继电器状态判断 17.1 上下电控制流程 17.1.1 上下电流程 高压上电是指动力电池为车辆提供高压,使高压回路导通,为车辆的各个高压部件供电&…

使用Open WebUI下载的模型文件(Model)默认存放在哪里?

🏡作者主页:点击! 🤖Ollama部署LLM专栏:点击! ⏰️创作时间:2025年2月21日21点21分 🀄️文章质量:95分 文章目录 使用CMD安装存放位置 默认存放路径 Open WebUI下…

005:Cesium.viewer 知识详解、示例代码

查看本专栏目录 - 本文是第 005个API内容详解 vue+cesium 示例教程200+目录 文章目录 一、Cesium.Viewer 知识详解1. 主要用途2. 构造函数与参数3. 常用属性(1)`viewer.scene`(2)`viewer.camera`(3)`viewer.entities`(4)`viewer.clock`4. 常用方法(1)`viewer.zoomTo(…

蓝桥杯单片机组第十二届省赛第二批次

前言 第十二届省赛涉及知识点:NE555频率数据读取,NE555频率转换周期,PCF8591同时测量光敏电阻和电位器的电压、按键长短按判断。 本试题涉及模块较少,题目不难,基本上准备充分的都能完整的实现每一个功能,并…