- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊
前言
- 如果说最经典的神经网络,
ResNet
肯定是一个,这篇文章是本人学习ResNet的学习笔记,并且用pytorch
复现了ResNet50,后面用它做了一个鸟类图像分类demo; - 欢迎收藏 + 关注,本人将会持续更新
文章目录
- ResNet网络讲解
- 什么是ResNet?
- ResNet神经网络突出点
- 为什么采用残差连接
- 模型退化、梯度消失、梯度爆炸
- 解决方法
- 残差网络
- ResNet-50复现
- 1、导入数据
- 1、导入库
- 2、查看数据信息和导入数据
- 3、展示数据
- 4、数据导入
- 5、数据划分
- 6、动态加载数据
- 2、构建ResNet-50网络
- 3、模型训练
- 1、构建训练集
- 2、构建测试集
- 3、设置超参数
- 4、模型训练
- 5、结果可视化
- 参考资料
ResNet网络讲解
什么是ResNet?
ResNet网络是CNN的经典网络架构,是有大神何凯明
提出的,主要为了解决随着网络的加深而引起的“ 退化 ”问题,主要用于图像分类。
可以说在如今的CV领域里面,大部分网络结构都有参考ResNet
网络思想,无论是在图像分类、目标检测、图像识别上,甚至在Transformer网络模型中,也融合了ResNet
网络的思想。
ResNet神经网络突出点
- 网络结构超过1000层:
- ❔ ❔ 超过1000层网络结构不是很容易么? 小编在学习深度学习的时候,曾经遇到过这样一个问题,有时候加深网络结构,反而在准确率、损失率上更差,这种现象称为模型“ 退化 ”现象,而ResNet的残差连接可以保证下一层的输出不会比输入差,从而可以加深网络结构。
- 提出残差模块(residual):这个是ResNet的核心;
- 采用大量的归一化在卷积层与激活函数之间.
为什么采用残差连接
模型退化、梯度消失、梯度爆炸
- 👉 模型退化:指随着网络层数的加深,其效果出现下降趋势,不如层数少的情况。如论文中图示,56层效果不如20层效果;
- 👉 梯度消失:这个是指随着网络层数的增加,反向传播,梯度更新的时候可能会造成前面几层的梯度很小、接近于0,这就会导致权重的更新会特别慢,效率低下。
- 👉 梯度爆炸:指随着网络层数的增加,在反向传播的时候,梯度变得非常大,从而在更新权重的时候,权重值发生大幅度变化,这可能导致网络不稳定,甚至是无法收敛。
解决方法
- 梯度消失、梯度爆炸:在数据预处理和网络层之间加入:BN层(Batch Normalization),从而对数据进行归一化;
- 模型退化:采用残差连接,如论文图,随着网络层数的增加,损失率更低了。
残差网络
在讲述前,这里先讲述一下恒等映射的概念:
- 恒等映射核心是复制,就是复制网络层,什么也不干。
➿ 可以这么理解:假设在一种网络A的后面添加几层形成新的网络B,如果A的输出经过新的层级变成B的输出没有发送变化,那么就可以说网络A和网络B的错误率是相等的,这样就确保了加深的网络层不会比之前的网络层效果差。
resent网络说明了,更深的网络结构可以有更好的效果,而解决这个的核心就是残差连接,网络结果如图所示:
上图就是何凯明提出的残差结构,这种结构实现了恒等映射,网络层的输出由两大模块组成:
- 其一:正常的卷积层;
- 其二:有一个分支输出到连接上,这个输出值就是输入的值;
最终结果就是:卷积层输出+分支输出,数学公式如下:
其中F(x)是卷积层的输出,x是分支的输入值。
极端情况:F(x)的网络层中,所有参数都为0,那么H(x)就是恒等映射。这样就确保了最后的错误率不会因为网络层的增加而导致变大。
在ResNet中有两个不同的ResNet模块
,如图所示:
左边:
- 有两层残差单元,输出通道都是3*3
- 使用情况:用于较浅的ResNet网络。
右边:
- 三层残差单元,称为blottlenck模块,作用是:现用
1*1
卷积进行降维,后用3*3
卷积进行特征特权,最后用1*1
卷积恢复原来的维度,这个可以很好的减少参数个数,用于较深的神经网络。
下图参考一个csdn大神笔记图:
CNN参数计算公式:卷积核尺寸 * 卷积核速度 * 卷积核组数 == 卷积核尺寸 * 输入特征矩阵深度 * 输出矩阵深度。
ResNet经典的网络结构有ResNet-50,ResNet-101等,本文将用pytorch
复现ResNet-50,并用其做一个简单的实验–鸟类图片分类。
ResNet-50网络结果如下:
ResNet-50复现
1、导入数据
1、导入库
import torch
import torch.nn as nn
import torchvision
import numpy as np
import os, PIL, pathlib
# 设置设备
device = "cuda" if torch.cuda.is_available() else "cpu"
device
'cuda'
2、查看数据信息和导入数据
数据目录有两个文件:一个数据文件,一个权重。
data_dir = "./data/bird_photos"
data_dir = pathlib.Path(data_dir)
# 类别数量
classnames = [str(path).split('/')[0] for path in os.listdir(data_dir)]
classnames
['Bananaquit', 'Black Skimmer', 'Black Throated Bushtiti', 'Cockatoo']
3、展示数据
import matplotlib.pylab as plt
from PIL import Image
# 获取文件名称
data_path_name = "./data/bird_photos/Bananaquit/"
data_path_list = [f for f in os.listdir(data_path_name) if f.endswith(('jpg', 'png'))]
# 创建画板
fig, axes = plt.subplots(2, 8, figsize=(16, 6))
for ax, img_file in zip(axes.flat, data_path_list):
path_name = os.path.join(data_path_name, img_file)
img = Image.open(path_name) # 打开
# 显示
ax.imshow(img)
ax.axis('off')
plt.show()
4、数据导入
from torchvision import transforms, datasets
# 数据统一格式
img_height = 224
img_width = 224
data_tranforms = transforms.Compose([
transforms.Resize([img_height, img_width]),
transforms.ToTensor(),
transforms.Normalize( # 归一化
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
)
])
# 加载所有数据
total_data = datasets.ImageFolder(root="./data/bird_photos", transform=data_tranforms)
5、数据划分
# 大小 8 : 2
train_size = int(len(total_data) * 0.8)
test_size = len(total_data) - train_size
train_data, test_data = torch.utils.data.random_split(total_data, [train_size, test_size])
6、动态加载数据
batch_size = 32
train_dl = torch.utils.data.DataLoader(
train_data,
batch_size=batch_size,
shuffle=True
)
test_dl = torch.utils.data.DataLoader(
test_data,
batch_size=batch_size,
shuffle=False
)
# 查看数据维度
for data, labels in train_dl:
print("data shape[N, C, H, W]: ", data.shape)
print("labels: ", labels)
break
data shape[N, C, H, W]: torch.Size([32, 3, 224, 224])
labels: tensor([0, 1, 0, 1, 2, 1, 1, 0, 2, 2, 1, 2, 1, 3, 1, 2, 2, 2, 2, 1, 2, 1, 2, 2,
0, 3, 3, 3, 3, 2, 3, 3])
2、构建ResNet-50网络
import torch.nn.functional as F
# 定义残差模块一,这个用于处理输入和输出通道一样的情况
'''
卷积核大小:1 3 1
核心特点:
尺寸不变:输入和输出的尺寸保持一致。
没有下采样:没有使用步长大于1的卷积操作,因此没有改变特征图的空间尺寸
'''
class Identity_block(nn.Module):
def __init__(self, in_channels, kernel_size, filters):
super(Identity_block, self).__init__()
# 输出通道
filter1, filter2, filter3 = filters
# 卷积层一
self.conv1 = nn.Conv2d(in_channels, filter1, kernel_size=1, stride=1)
self.bn1 = nn.BatchNorm2d(filter1)
# 卷积层2
self.conv2 = nn.Conv2d(filter1, filter2, kernel_size=kernel_size, padding=1) # 通过卷积输入输出公式发现,padding=1,可以保证输入和输出尺寸相同
self.bn2 = nn.BatchNorm2d(filter2)
# 卷积层3
self.conv3 = nn.Conv2d(filter2, filter3, kernel_size=1, stride=1)
self.bn3 = nn.BatchNorm2d(filter3)
def forward(self, x):
# 记录原始值
xx = x
x = F.relu(self.bn1(self.conv1(x)))
x = F.relu(self.bn2(self.conv2(x)))
x = self.bn3(self.conv3(x))
# 残差连接,输入、输出维度不变
x += xx
x = F.relu(x)
return x
# 定义卷积模块二:用于处理输入和输出不一样的情况
'''
* 卷积核还是:1 3 1
* stride=2
* 这里的分支是采用一个Conv2D,和一个归一化BN层,也是为了处理数据维度吧, 这种维度的变化,可以用ai举例子
核心特点:
尺寸变化,stride=2降维
'''
class ConvBlock(nn.Module):
def __init__(self, in_channels, kernel_size, filters, stride=2):
super(ConvBlock, self).__init__()
filter1, filter2, filter3= filters
# 卷积层1
self.conv1 = nn.Conv2d(in_channels, filter1, kernel_size=1, stride=stride)
self.bn1 = nn.BatchNorm2d(filter1)
# 卷积2
self.conv2 = nn.Conv2d(filter1, filter2, kernel_size=kernel_size, padding=1) # 需要维持维度不变
self.bn2 = nn.BatchNorm2d(filter2)
# 卷积3
self.conv3 = nn.Conv2d(filter2, filter3, kernel_size=1, stride=1) # stride = 1,维持通道不变
self.bn3 = nn.BatchNorm2d(filter3)
# 用于匹配维度的shortcut卷积,这个就是上面Identity_block的x分支
self.shortcut = nn.Conv2d(in_channels, filter3, kernel_size=1, stride=stride)
self.shortcut_bn = nn.BatchNorm2d(filter3)
def forward(self, x):
xx = x
x = F.relu(self.bn1(self.conv1(x)))
x = F.relu(self.bn2(self.conv2(x)))
x = self.bn3(self.conv3(x))
temp = self.shortcut_bn(self.shortcut(xx))
x += temp
x = F.relu(x)
return x
# 定义ResNet50
class ResNet50(nn.Module):
def __init__(self, classes): # 类别数量
super().__init__()
# 头顶
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)
self.bn1 = nn.BatchNorm2d(64)
self.max_pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
# 第一部分
self.part1_1 = ConvBlock(64, 3, [64, 64, 256], stride=1)
self.part1_2 = Identity_block(256, 3, [64, 64, 256])
self.part1_3 = Identity_block(256, 3, [64, 64, 256])
# 第二部分
self.part2_1 = ConvBlock(256, 3, [128, 128, 512])
self.part2_2 = Identity_block(512, 3, [128, 128, 512])
self.part2_3 = Identity_block(512, 3, [128, 128, 512])
self.part2_4 = Identity_block(512, 3, [128, 128, 512])
# 第三部分
self.part3_1 = ConvBlock(512, 3, [256, 256, 1024])
self.part3_2 = Identity_block(1024, 3, [256, 256, 1024])
self.part3_3 = Identity_block(1024, 3, [256, 256, 1024])
self.part3_4 = Identity_block(1024, 3, [256, 256, 1024])
self.part3_5 = Identity_block(1024, 3, [256, 256, 1024])
self.part3_6 = Identity_block(1024, 3, [256, 256, 1024])
# 第四部分
self.part4_1 = ConvBlock(1024, 3, [512, 512, 2048])
self.part4_2 = Identity_block(2048, 3, [512, 512, 2048])
self.part4_3 = Identity_block(2048, 3, [512, 512, 2048])
# 平均池化
self.avg_pool = nn.AvgPool2d(kernel_size=7)
# 全连接
self.fn1 = nn.Linear(2048, classes)
def forward(self, x):
# 头部
x = F.relu(self.bn1(self.conv1(x)))
x = self.max_pool(x)
x = self.part1_1(x)
x = self.part1_2(x)
x = self.part1_3(x)
x = self.part2_1(x)
x = self.part2_2(x)
x = self.part2_3(x)
x = self.part2_4(x)
x = self.part3_1(x)
x = self.part3_2(x)
x = self.part3_3(x)
x = self.part3_4(x)
x = self.part3_5(x)
x = self.part3_6(x)
x = self.part4_1(x)
x = self.part4_2(x)
x = self.part4_3(x)
x = self.avg_pool(x)
x = x.view(x.size(0), -1) # 扁平化
x = self.fn1(x)
return x
model = ResNet50(classes=len(classnames)).to(device)
model
ResNet50(
(conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3))
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(max_pool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(part1_1): ConvBlock(
(conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(shortcut): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
(shortcut_bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(part1_2): Identity_block(
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(part1_3): Identity_block(
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(part2_1): ConvBlock(
(conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(2, 2))
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(shortcut): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2))
(shortcut_bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(part2_2): Identity_block(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(part2_3): Identity_block(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(part2_4): Identity_block(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(part3_1): ConvBlock(
(conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(2, 2))
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1))
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(shortcut): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2))
(shortcut_bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(part3_2): Identity_block(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1))
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(part3_3): Identity_block(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1))
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(part3_4): Identity_block(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1))
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(part3_5): Identity_block(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1))
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(part3_6): Identity_block(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1))
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(part4_1): ConvBlock(
(conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(2, 2))
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1))
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(shortcut): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2))
(shortcut_bn): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(part4_2): Identity_block(
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1))
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1))
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(part4_3): Identity_block(
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1))
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1))
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(avg_pool): AvgPool2d(kernel_size=7, stride=7, padding=0)
(fn1): Linear(in_features=2048, out_features=4, bias=True)
)
model(torch.randn(32, 3, 224, 224).to(device)).shape
torch.Size([32, 4])
3、模型训练
1、构建训练集
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
batch_size = len(dataloader)
train_acc, train_loss = 0, 0
for X, y in dataloader:
X, y = X.to(device), y.to(device)
# 训练
pred = model(X)
loss = loss_fn(pred, y)
# 梯度下降法
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 记录
train_loss += loss.item()
train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
train_acc /= size
train_loss /= batch_size
return train_acc, train_loss
2、构建测试集
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset)
batch_size = len(dataloader)
test_acc, test_loss = 0, 0
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
loss = loss_fn(pred, y)
test_loss += loss.item()
test_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
test_acc /= size
test_loss /= batch_size
return test_acc, test_loss
3、设置超参数
loss_fn = nn.CrossEntropyLoss() # 损失函数
learn_lr = 1e-4 # 超参数
optimizer = torch.optim.Adam(model.parameters(), lr=learn_lr) # 优化器
4、模型训练
train_acc = []
train_loss = []
test_acc = []
test_loss = []
epoches = 80
for i in range(epoches):
model.train()
epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
# 输出
template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}')
print(template.format(i + 1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print("Done")
5、结果可视化
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore") #忽略警告信息
epochs_range = range(epoches)
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training= Loss')
plt.show()
参考资料
【深度学习】ResNet网络讲解-CSDN博客
K同学啊,训练营文档