PyTorch-基础(CUDA、Dataset、transforms、卷积神经网络、VGG16)

news2025/2/25 15:29:38

PyTorch-基础

环境准备

CUDA Toolkit安装(核显跳过此步骤)

CUDA Toolkit是NVIDIA的开发工具,里面提供了各种工具、如编译器、调试器和库

首先通过NVIDIA控制面板查看本机显卡驱动对应的CUDA版本,如何去下载对应版本的Toolkit工具,本人下载的是Toolkit 12.2

下载地址:https://developer.nvidia.com/cuda-toolkit-archive

在这里插入图片描述

下载完毕后打开cuda_12.2.2_windows_network.exe,这里会让你指定一个临时目录这个目录用于存放临时文件的,安装Toolkit 成功后会自动卸载

注意临时目录不要和安装目录指定相同位置,假如指定了相同位置后面是无法安装的

在这里插入图片描述

选择路径时可以切换到自定义的安装路径

路径最好和工具中一致,参考路径D:\NVIDIA CUDA\NVIDIA GPU Computing Toolkit\CUDA\v版本号

在这里插入图片描述

安装完后后我们需要添加CUDA环境变量

在这里插入图片描述

在这里插入图片描述

安装完毕后通过nvcc -V测试是否安装成功

在这里插入图片描述

CUDNN安装(核显跳过此步骤)

Cudnn是NVIDIA提供的一个深度神经网络加速库,它包含了一系列高性能的基本函数和算法,用于加速深度学习任务的计算,它可以与Cuda一起使用,提供了针对深度学习任务的高效实现。

下载地址:https://developer.nvidia.com/cudnn-downloads

选择对应CUDA版本下载,这里下载压缩包

在这里插入图片描述

下载完毕后将压缩包解压,将解压内容直接复制粘贴到CUDA安装目录下,本人安装目录是D:\NVIDIA CUDA\NVIDIA GPU Computing Toolkit\CUDA\v12.1

在这里插入图片描述

粘贴完毕后打开命令行执行nvidia-smi看到如下内容表示安装成功

在这里插入图片描述

Anaconda创建虚拟环境

#创建一个名为pytorch,python版本3.8的虚拟环境
conda create -n pytroch2.3.0 python=3.8
#切换到当前环境
conda activate pytroch2.3.0
#查看本机支持的CUDA版本(核显跳过)
nvidia-smi
#安装pytorch
#官网https://pytorch.org/get-started/locally/
#下载对应CUDA版本的pytorch(独显电脑执行该命令)
#如果与下载很慢,可以分开下载
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
#下载对应CUDA版本的pytorch(核显电脑执行该命令)
conda install pytorch torchvision torchaudio cpuonly -c pytorch

测试PyTroch

在包都安装完毕后执行如下命令没有任何报错表示安装成功

#进入python命令行
python
#引入torch
import torch
#测试cuda(核显返回False,独显返回True)
torch.cuda.is_available()

编辑器选择

在开发过程中需要使用到2款编辑器,分别是PyCharm和Jupyter

PyCharm

PyCharm:https://www.jetbrains.com.cn/pycharm/download/

安装完毕后再PyCharm中Settings中找到Python Interpreter并且选择Add Interpreter将Conda添加进来,这样项目就可以选择指定Conda的环境运行

在这里插入图片描述

Jupyter

安装Anaconda时会顺便安装了Jupyter,但是Jupyter默认是Base环境,接下来我们需要在前面创建好的pytroch2.3.0环境下安装Jupyter

#切换到pytroch2.3.0
conda activate pytroch2.3.0
#安装Jupyter
conda install nb_conda
#安装完毕,
jupyter notebook

启动成功后创建一个文件,切换环境,执行测试代码

在这里插入图片描述

常用类库

Dataset

Pytroch提供Dataset用于存放数据集,使用方式很简单编写一个类继承Dataset,实现init、getitem、len方法即可简单使用Dataset,以下就是一个Dataset的简单使用

from torch.utils.data import Dataset
from PIL import Image
import os

class MyData(Dataset):
    #构造函数
    def __init__(self,root_dir,label_dir):
        self.root_dir = root_dir
        self.label_dir = label_dir
        #文件路径
        self.path = os.path.join(self.root_dir,self.label_dir)
        #图片列表
        self.img_path = os.listdir(self.path)
    #获取图片下标    
    def __getitem__(self, item):
        img_name = self.img_path[item]
        img_item_path = os.path.join(self.root_dir,self.label_dir,img_name)
        img = Image.open(img_item_path)
        label = self.label_dir
        return img,label
    #获取长度
    def __len__(self):
        return len(self.img_path)

root_dir = 'E:\\Python-Project\\Torch-Demo\\dataset\\train'
#蚂蚁数据集
ants_label_dir = 'ants_image'
ants_dataset = MyData(root_dir,ants_label_dir)
#蜜蜂数据集
bees_label_dir = 'bees_image'
bees_dataset = MyData(root_dir,bees_label_dir)
#合并2个数据集
train_dataset = ants_dataset + bees_dataset

transforms

transforms是神经网络中一个非常重要的库,它提供了将数据转换为Tensor类型数据,Tensor包装了神经网络的数据参数如数据网络的数据格式、梯度、梯度方法等,并且transforms包含了很多操作数据的库可以对Tensor数据进行各种修改

from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms

writer = SummaryWriter('logs')

img_path = "data/train/ants_image/0013035.jpg"
img = Image.open(img_path)
#将图片转换为tensor类型
trans_totensor = transforms.ToTensor()
img_tensor = trans_totensor(img)
writer.add_image("ToTensor", img_tensor)

#对tensor进行进行归一化,减少不同图片的色彩的差值,提升训练效果
#规划的计算公式 output[channel] = (input[channel] - mean[channel]) / std[channel]
print(img_tensor[0][0][0])
trans_norm = transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
img_norm = trans_norm(img_tensor)
print(img_norm[0][0][0])
writer.add_image("Normalize", img_norm)

#对PIL图片大小修改
trans_resize = transforms.Resize((512, 512))
img_resize = trans_resize(img)
img_resize = trans_totensor(img_resize)
writer.add_image("Resize", img_resize)

#对PIL图片进行整体缩放
trans_resize_2 = transforms.Resize(512)
trans_compose = transforms.Compose([trans_resize_2,trans_totensor])
img_resize_2 = trans_compose(img)
writer.add_image("Resize", img_resize_2,1)

#对PIL图片进行随机裁剪
trans_random = transforms.RandomCrop((128,128))
trans_compose_2 = transforms.Compose([trans_random,trans_totensor])
for i in range(10):
    img_crop = trans_compose_2(img)
    writer.add_image("RandomCrop", img_crop,i)

writer.close()

tensorboard

tensorboard提供训练可视化工具,通过图标的方式可以跟踪实验中不同阶段下的指标用于对比

依赖安装
#安装tensorboard可视化工具
conda install tensorboard
启动tensorboard
#--logdir 指定读取的文件目录
#--port 指定服务启动的端口
tensorboard --logdir=logs --port=6007
简单使用案例

以下创建1个函数y=2x,并且将内容输出到tensorboard

from torch.utils.tensorboard import SummaryWriter
#指定日志生成的目录
writer = SummaryWriter("logs")
#往writer写入数据
#参数1:图表名称
#参数2:Y轴值
#参数3:X轴值
for i in range(100):
    writer.add_scalar("y=2x", 2 * i, i)
#关闭流
writer.close()

在项目目录下使用tensorboard --logdir=logs启动tensorboard

常见问题:

多次重复执行时刷新tensorboard会发现图标很乱,解决方法有2种:

1、将logs下文件生成重新代码重新启动tensorboard

2、每次执行都创建一个新的logs文件,将图标写入新logs文件下

在这里插入图片描述

Dataset下载与转换

结合Dataset和Transforms对数据集进行下载并且转换,PyTorch提供了一些用于练习的数据集可以通过Dataset进行下载,一下就是一个案例

import torchvision
from torch.utils.tensorboard import SummaryWriter

#定义一个转换操作,对dataset中的数据集进行操作
dataset_transform = torchvision.transforms.Compose([
    torchvision.transforms.ToTensor(),
])

#训练数据集,CIFAR10是PyTorch提供的一个数据集,会自动去下载
#https://www.cs.toronto.edu/~kriz/cifar.html
train_set = torchvision.datasets.CIFAR10(root="./dataset",train=True,transform=dataset_transform,download=True)
#测试数据集
test_set = torchvision.datasets.CIFAR10(root="./dataset",train=False,transform=dataset_transform,download=True)

#使用tensorboard显示数据集合,显示前面10张
writer = SummaryWriter("p10")
for i in range(10):
    img,target = test_set[i]
    writer.add_image("test_set",img,i)

writer.close()

DataLoader

Dataset是数据集,那么需要获取数据集的数据那么就需要用到DataLoader,DataLoader可以将数据集安装指定规则分批、打乱后重新组合成一批一批的数据

import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

#测试数据集
test_data = torchvision.datasets.CIFAR10(root="./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
#加载数据集,batch_size=4每获取4张数据为一组,shuffle=True乱序获取
#加载完毕后元组(图片集合,标签集合)
test_loader = DataLoader(dataset=test_data,batch_size=4,shuffle=True,num_workers=0,drop_last=False)

#打印Dataloader
writer = SummaryWriter("dataloder")
step = 0
for data in test_loader:
    imgs,targets = data
    writer.add_images("test_data",imgs,step)
    step = step + 1
writer.close()

使用tensorboard --logdir=dataloder在控制台查看加载好的数据集

在这里插入图片描述

神经网络

PyTorch封装了很多神经网络的类库,文档地址 https://pytorch.org/docs/stable/nn.html

卷积神经网络(NN)

卷积层

卷积神经网络具体的计算过程可以参考:https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md

在这里插入图片描述

结合上图与参考地址中的动图案例可以总结出在计算过程中有几个重要参数:

  1. 输入(二维数组)
  2. 卷积核每次计算后移动的步长(stride)
  3. 是否对图像边填充,而增加图像大小(padding)
  4. 输出(二维数组)
import torch
import torch.nn.functional as F
#输入图像
input = torch.tensor([
    [1,2,0,3,1],
    [0,1,2,3,1],
    [1,2,1,0,0],
    [5,2,3,1,1],
    [2,1,0,1,1]
])
#卷积核
kernel = torch.tensor([
    [1,2,1],
    [0,1,0],
    [2,1,0]
])
#尺寸切换
input = torch.reshape(input,(1,1,5,5))
kernel = torch.reshape(kernel,(1,1,3,3))
#使用卷积核对图像进行卷积,卷积和在图像中滑动的步长1,可获得一个3X3输出
output = F.conv2d(input,kernel,stride=1,padding=0)
print(output)

#使用卷积核对图像进行卷积,卷积和在图像中滑动的步长2,可获得一个3X3输出
output2 = F.conv2d(input,kernel,stride=2,padding=0)
print(output2)

#使用卷积核对图像进行卷积,卷积和在图像中滑动的步长1,对图像外面填充一圈0的数据图像将变成7X7,可获得一个5X5输出
# [0, 0, 0, 0, 0, 0, 0]
# [0, 1, 2, 0, 3, 1, 0]
# [0, 0, 1, 2, 3, 1, 0]
# [0, 1, 2, 1, 0, 0, 0]
# [0, 5, 2, 3, 1, 1, 0]
# [0, 2, 1, 0, 1, 1, 0]
# [0, 0, 0, 0, 0, 0, 0]
output3 = F.conv2d(input,kernel,stride=1,padding=1)
print(output3)

案例

将PyTorch测试数据集CIFAR10下载下来,利用Conv2d对数据集中的图片进行卷积,卷积核大小为3x3,步长为1,输出6通道

import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

#使用测试集训练,以为训练集合数据太多了
dataset = torchvision.datasets.CIFAR10(root='./dataset', train=False, transform=torchvision.transforms.ToTensor(),download=True)
#加载数据
dataloader = DataLoader(dataset,batch_size=64)
#定义一个训练模型
class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        #定义一个的卷积方法
        #参数1:输入3个通道的数据(图片又RBG 3个通道组成)
        #参数2:输出为6个通道的数据(进行6次卷积计算结果集堆叠在一起)
        #参数3:卷积核大小3X3
        #参数4:卷积核每次计算后移动步长1
        #参数5:不对图像边进行填充
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=3,stride=1,padding=0)

    def forward(self, x):
        #对数据进行卷积
        x = self.conv1(x)
        return x

my_model = MyModel()

writer = SummaryWriter('./logs_conv2d')
step = 0
#计算DataLoader中的每一组数据
for data in dataloader:
    imgs,targets = data
    output = my_model(imgs)
    #torch.Size([64, 3, 32, 32])
    # print(imgs.shape)
    #torch.Size([64, 6, 30, 30])
    # print(output.shape)
    writer.add_images("input",imgs,step)
    #由于6个通道在tensorboard无法显示,强行转换为3个通道,参数1填写-1会根据后面的数自动推算
    output = torch.reshape(output,(-1,3,30,30))
    writer.add_images("output",output,step)
    step = step + 1

writer.close()
最大池化核心层

最大池化的目的是将图像中的特质保留将图像缩小,比如一张5x5的图片池化后变成2x2的这样可以缩小图片提高计算过程

最大池化核,在每一片被池化核覆盖的区域内获取一个最大的值作为结果写入到结果集中,默认没获取完后池化核移动步长等于池化核大小

  1. Ceil_model=True:池化核覆盖区域超出图像范围时也要获取最大值
  2. Ceil_model=False:只获取池化核覆盖区域在图像范围内的最大值,超出范围的值丢弃

在这里插入图片描述

案例

将PyTorch测试数据集CIFAR10下载下来,对数据集进行池化

import torchvision
from torch import nn
from torch.nn import MaxPool2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
#使用测试集训练,以为训练集合数据太多了
dataset = torchvision.datasets.CIFAR10(root='./dataset', train=False, download=True, transform=torchvision.transforms.ToTensor())
#加载数据
dataloader = DataLoader(dataset,batch_size=64)
#定义一个训练模型
class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        #定义最大池化的规则
        #参数1:池化核3x3
        #参数2:磁化核溢出部分是否保留
        self.maxpool1 = MaxPool2d(kernel_size=3,ceil_mode=False)

    def forward(self, input):
        #对数据进行池化
        output = self.maxpool1(input)
        return output

my_model = MyModel()

writer = SummaryWriter('./logs_maxpool')
step = 0
#计算DataLoader中的每一组数据
for data in dataloader:
    imgs,targets = data
    writer.add_images("input",imgs,step)
    output = my_model(imgs)
    writer.add_images("output",output,step)
    step += 1

writer.close()
非线性激活

默认的图像都是线性的训练出来的模型就很死版,对数据集进行非线性集合后训练模型可以训练出符合各种曲线各种特征的模型

import torchvision
from torch import nn
from torch.nn import ReLU, Sigmoid
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10(root='./dataset', train=False, download=True, transform=torchvision.transforms.ToTensor())
#加载数据
dataloader = DataLoader(dataset,batch_size=64)
class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        #最简单的非线性激活,把数据中负数变为0(图像场景下不明显)
        self.relu1 = ReLU()
        #Sigmoid函数计算,输出值介于0-1之间
        self.sigmoid1 = Sigmoid()

    def forward(self, input):
        output = self.sigmoid1(input)
        return output

my_model = MyModel()

writer = SummaryWriter('./logs_relu')
step = 0
#计算DataLoader中的每一组数据
for data in dataloader:
    imgs,targets = data
    output = my_model(imgs)
    writer.add_images("input",imgs,step)
    writer.add_images("output",output,step)
    step = step + 1

writer.close()

网络模型搭建

PyTorch中的模型

PyTorch中提供了很多以实现的模型有的时候直接使用PyTorch的模型就可完成我们的需求,不需要直接去编写模型,官方文档中包含了完整的实例,例如图像处理模型地址如下:https://pytorch.org/vision/stable/models.html#classification

基于VGG16修改模型

在很多的需求的实现过程都拿vgg16作为前置的模型,在vgg16的基础上进行修改,以下就是基于vgg16模型修改适应CIFAR10数据集

import torchvision.datasets
from torch import nn

dataset = torchvision.datasets.CIFAR10(root='./dataset', train=False, transform=torchvision.transforms.ToTensor(),download=True)

#获取一个已经训练过的vgg16模型,这会下载一个包
vgg16_true = torchvision.models.vgg16(pretrained=True)
#获取一个没有训练过的vgg16模型
vgg16_false = torchvision.models.vgg16(pretrained=False)
#打印vgg16模型
print(vgg16_true)

#vgg16默认是输出1000个结果,CIFAR10数据集结果只有10类,让vgg16模型适应CIFAR10,操作方式有2种
#1. 在vgg16基础上添加一层线性层
vgg16_true.classifier.add_module("add_linear", nn.Linear(1000, 10))
print(vgg16_true)
#2. 直接修改第六层的逻辑
vgg16_false.classifier[6] = nn.Linear(4096, 10)
print(vgg16_false)

模型的保存与加载

import torch
import torchvision

#获取一个没有训练过的vgg16模型
vgg16 = torchvision.models.vgg16(pretrained=False)
#保存方式1:保存模型结构+参数文件
torch.save(vgg16,"vgg16_method1.pth")
#保存方式2:保存模型的参数(官方推荐)
torch.save(vgg16.state_dict(),"vgg16_method2.pth")

#加载模型结构+参数文件(方式1加载时要有该网络模型的对象才能加载成功)
model = torch.load("vgg16_method1.pth")
print(model)
#加载模型的参数(官方推荐)
dict = torch.load("vgg16_method2.pth")
vgg16 = torchvision.models.vgg16(pretrained=False)
vgg16.load_state_dict(dict)
print(model)

CIFAR10分类模型案例

编写一段网络模型对CIFAR10中的数据集进行分类,最后输入一张图片得到分类,模型的搭建流程图像

在这里插入图片描述

import torchvision
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

from model import *
#定义训练的设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#准备数据集
train_data = torchvision.datasets.CIFAR10(root='./dataset', train=True, download=True,transform=torchvision.transforms.ToTensor())
test_data = torchvision.datasets.CIFAR10(root='./dataset', train=False, download=True,transform=torchvision.transforms.ToTensor())

#获得数据集的长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))

#利用DataLoader加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

#创建网络模型
my_model = MyModel()
my_model = my_model.to(device)  #使用GPU训练
#损失函数
loss_fn = nn.CrossEntropyLoss()
loss_fn = loss_fn.to(device) #使用GPU训练
#优化器
learning_rate = 0.001
optimizer = torch.optim.SGD(my_model.parameters(), learning_rate)

#设置训练网络的参数
total_train_step = 0 #训练的次数
total_test_step = 0  #测试的测试
epochs = 10          #训练轮数

#添加tensorboard
writer = SummaryWriter('./logs_train')

for i in range(epochs):
    print("--------------------第{}轮训练开始--------------------".format(i+1))
    #训练集数据
    my_model.train()
    for data in train_dataloader:
        imgs,targets = data
        imgs = imgs.to(device) #使用GPU训练
        targets = targets.to(device) #使用GPU训练
        outputs = my_model(imgs)
        #计算损失函数
        loss = loss_fn(outputs, targets)
        #使用优化器优化模型
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        #记录训练次数
        total_train_step += 1
        if total_train_step % 100 == 0: #每逢100才打印
            print("训练次数:{},Loss:{}".format(total_train_step, loss.item()))
            writer.add_scalar("train_loss",loss.item(),total_train_step)
    #测试步骤开始
    my_model.eval()
    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad():
        for data in test_dataloader:
            imgs,targets = data
            imgs = imgs.to(device)  # 使用GPU训练
            targets = targets.to(device)  # 使用GPU训练
            outputs = my_model(imgs)
            loss = loss_fn(outputs, targets)
            total_test_loss += loss.item()
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy += accuracy.item()
    print("整体测试集上的Loss:{}".format(total_test_loss))
    print("整体测试集上的准确率:{}".format(total_accuracy/test_data_size))
    writer.add_scalar("test_loss", total_test_loss, total_test_step)
    writer.add_scalar("test_accuracy", total_accuracy/test_data_size, total_test_step)
    total_test_step += 1
    #保存每一轮的训练结果
    torch.save(my_model,"./pth/my_model_{}.pth".format(i))
    print("模型已保存")

writer.close()

编写测试程序加载训练好的模型,识别

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2304942.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

IO/网络IO基础全览

目录 IO基础CPU与外设1. 程序控制IO(轮询)2. 中断中断相关知识中断分类中断处理过程中断隐指令 3. DMA(Direct Memory Access) 缓冲区用户空间和内核空间IO操作的拷贝概念传统IO操作的4次拷贝减少一个CPU拷贝的mmap内存映射文件(m…

【DeepSeek-R1背后的技术】系列十一:RAG原理介绍和本地部署(DeepSeekR1+RAGFlow构建个人知识库)

【DeepSeek-R1背后的技术】系列博文: 第1篇:混合专家模型(MoE) 第2篇:大模型知识蒸馏(Knowledge Distillation) 第3篇:强化学习(Reinforcement Learning, RL)…

鸿蒙开发深入浅出04(首页数据渲染、搜索、Stack样式堆叠、Grid布局、shadow阴影)

鸿蒙开发深入浅出04(首页数据渲染、搜索、Stack样式堆叠、Grid布局、shadow阴影) 1、效果展示2、ets/pages/Home.ets3、ets/views/Home/SearchBar.ets4、ets/views/Home/NavList.ets5、ets/views/Home/TileList.ets6、ets/views/Home/PlanList.ets7、后端…

【数据结构】B树家族详解:B树、B+树、B*

一、B树(B-Tree) 1. 定义 B树是一种平衡多路查找树,自平衡的树,能够保持数据有序,设计目标是为减少磁盘I/O次数。适用于需要频繁读写磁盘的场景(如数据库、文件系统)。 2、B树基本性质 节点键值数量限制: 对于 m 阶 B 树,根节点至少有 1 个键值,最多有 m - 1 个…

C语言数据结构—二叉树的链式结构实现

目录 1、建立二叉树 1.1 二叉树的结构 1.2 手动建立二叉树 2、二叉树的遍历 2.1 二叉树的三种遍历方式 2.1.1 前序遍历 2.1.2 中序遍历 2.1.2 后序遍历 3、求二叉树的结点数和二叉树的高度 3.1 求二叉树结点数 3.2 求二叉树叶子结点 3.3 求二叉树第k层结点的个数 …

Java 大视界 —— Java 大数据在智能零售动态定价策略中的应用实战(98)

💖亲爱的朋友们,热烈欢迎来到 青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而 我的博客 正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也…

危化品经营单位安全管理人员的职责及注意事项

危化品经营单位安全管理人员肩负着保障经营活动安全的重要责任,以下是其主要职责及注意事项: 职责 1. 安全制度建设与执行:负责组织制定本单位安全生产规章制度、操作规程和生产安全事故应急救援预案,确保这些制度符合国家相关法…

Day 49 卡玛笔记

这是基于代码随想录的每日打卡 1143. 最长公共子序列 给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。 一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变…

WebXR教学 01 基础介绍

什么是WebXR? 定义 XR VR AR Web上使用XR技术的API WebXR 是一组用于在 Web 浏览器中实现虚拟现实(VR)和增强现实(AR)应用的技术标准。它由 W3C 的 Immersive Web 工作组开发,旨在提供跨设备的沉浸式体验…

DeepSeek+Kimi生成高质量PPT

DeepSeek与Kimi生成PPT全流程解析 一、工具分工原理 DeepSeek核心作用:生成结构化PPT大纲(擅长逻辑构建与内容优化)Kimi核心作用:将文本转换为视觉化PPT(提供模板库与排版引擎) 二、操作步骤详解 1. 通…

clickhouse--表引擎的使用

表引擎决定了如何存储表的数据。包括: 数据的存储方式和位置,写到哪里以及从哪里读取数据。(默认是在安装路径下的 data 路径)支持哪些查询以及如何支持。(有些语法只有在特定的引擎下才能用)并发数据访问。索引的使用&#xff0…

tauri输入js脚本的方法和注意事项initialization_script

注入js脚本最常用的就是initialization_script,通过这个方法注入的js脚本在页面每个页面都会执行,这个在tauri文档也可以搜到:WebviewWindowBuilder in tauri::webview - Rust,但是请注意,这个方法只能用在WindowBuild…

基于springboot的学习社区博客

一、系统架构 前端:html | bootstarp | jquery | css | ajax 后端:springboot | mybatis 环境:jdk1.8 | mysql | maven 二、代码及数据 三、功能介绍 01. web端-注册 02. web端-登录 03. web端-首页 04. web端-文章明…

python-leetcode 42.验证二叉搜索树

题目: 给定二叉树的根节点root,判断是否是一个有效二叉搜索树 有效二叉搜索树: 1.节点的左子树只包含小于当前节点的树 2.节点的右子树只包含大于当前节点的树 3.所有左子树和右子树自身必须也是二叉搜索树 方法一:递归 如果该二叉树的…

基于PSO-LSTM长短期记忆神经网络的多分类预测【MATLAB】

一、研究背景与意义 在时间序列分类、信号识别、故障诊断等领域,多分类预测任务对模型的时序特征捕捉能力提出了极高要求。传统LSTM网络虽能有效建模长程依赖关系,但其性能高度依赖超参数的选择,例如隐含层神经元数量、学习率、迭代次数等。…

拓扑排序的核心算法:BFS应用与实践

目录 一、拓扑排序简介 二、BFS解决拓扑排序的步骤 三、C实现 四、代码解释 五、总结 一、拓扑排序简介 拓扑排序是对有向无环图(DAG)进行排序的一种方法,使得对于图中的每一条有向边 (u, v),u 在排序中总是位于 v 的前面。拓…

Cocos Creator Shader入门实战(一):材质和Effect的了解

引擎版本:3.8.5 环境: Windows 简介 在Cocos Creator中,游戏炫彩缤纷的效果是借助着色器(Shader)来实现的。 Cocos主要基于OpenGL ES,而Shader的编写则是在可编程渲染管线中基于修改:顶点着色器(Vertex) 和 片段着色…

Android 老项目 jcenter 库失效

最近重新维护了一些老项目发现大部分jcenter库失效了, Could not resolve com.xx:2.1.3. 如果你也遇到了,不妨试试 替换为 aliyun的jcenter服务,就不用一个个找代替库了。 project 下的 build.gradle 文件添加: maven { url htt…

2025.2.23机器学习笔记:PINN文献阅读

2025.2.23周报 一、文献阅读题目信息摘要Abstract创新点网络架构架构A架构B架构C 实验结论后续展望 一、文献阅读 题目信息 题目: Physics-Informed Neural Networks for Modeling Water Flows in a River Channel期刊: IEEE TRANSACTIONS ON ARTIFICI…

Python Django系列—入门实例(二)

数据库配置 现在,打开 mysite/settings.py 。这是个包含了 Django 项目设置的 Python 模块。 默认情况下,​ DATABASES 配置使用 SQLite。如果你是数据库新手,或者只是想尝试 Django,这是最简单的选择。SQLite 包含在 Python 中…