手写数字识别的神经网络 2层神经网络的类 代码详解

news2025/2/21 5:03:12

源代码和图解来自鱼书

目录

2层神经网络的类

源代码:

详解:

1. 类的初始化 (__init__)

2. 前向传播 (predict)

3. 损失函数 (loss)

4. 准确率计算 (accuracy)

5. 数值梯度计算 (numerical_gradient)

6. 反向传播计算梯度 (gradient)

总结:


2层神经网络的类

源代码:

# coding: utf-8
import sys, os
sys.path.append(os.pardir)  # 为了导入父目录的文件而进行的设定
from common.functions import *
from common.gradient import numerical_gradient


class TwoLayerNet:

    def __init__(self, input_size, hidden_size, output_size, weight_init_std=0.01):
        # 初始化权重
        self.params = {}
        self.params['W1'] = weight_init_std * np.random.randn(input_size, hidden_size)
        self.params['b1'] = np.zeros(hidden_size)
        self.params['W2'] = weight_init_std * np.random.randn(hidden_size, output_size)
        self.params['b2'] = np.zeros(output_size)

    def predict(self, x):
        W1, W2 = self.params['W1'], self.params['W2']
        b1, b2 = self.params['b1'], self.params['b2']
    
        a1 = np.dot(x, W1) + b1
        z1 = sigmoid(a1)
        a2 = np.dot(z1, W2) + b2
        y = softmax(a2)
        
        return y
        
    # x:输入数据, t:监督数据
    def loss(self, x, t):
        y = self.predict(x)
        
        return cross_entropy_error(y, t)
    
    def accuracy(self, x, t):
        y = self.predict(x)
        y = np.argmax(y, axis=1)
        t = np.argmax(t, axis=1)
        
        accuracy = np.sum(y == t) / float(x.shape[0])
        return accuracy
        
    # x:输入数据, t:监督数据
    def numerical_gradient(self, x, t):
        loss_W = lambda W: self.loss(x, t)
        
        grads = {}
        grads['W1'] = numerical_gradient(loss_W, self.params['W1'])
        grads['b1'] = numerical_gradient(loss_W, self.params['b1'])
        grads['W2'] = numerical_gradient(loss_W, self.params['W2'])
        grads['b2'] = numerical_gradient(loss_W, self.params['b2'])
        
        return grads
        
    def gradient(self, x, t):
        W1, W2 = self.params['W1'], self.params['W2']
        b1, b2 = self.params['b1'], self.params['b2']
        grads = {}
        
        batch_num = x.shape[0]
        
        # forward
        a1 = np.dot(x, W1) + b1
        z1 = sigmoid(a1)
        a2 = np.dot(z1, W2) + b2
        y = softmax(a2)
        
        # backward
        dy = (y - t) / batch_num
        grads['W2'] = np.dot(z1.T, dy)
        grads['b2'] = np.sum(dy, axis=0)
        
        da1 = np.dot(dy, W2.T)
        dz1 = sigmoid_grad(a1) * da1
        grads['W1'] = np.dot(x.T, dz1)
        grads['b1'] = np.sum(dz1, axis=0)

        return grads

详解:

这段代码实现了一个两层神经网络 TwoLayerNet,并包含了前向传播、损失计算、准确率计算、梯度计算等功能。我们逐步解释每个部分:

1. 类的初始化 (__init__)

class TwoLayerNet:
    def __init__(self, input_size, hidden_size, output_size, weight_init_std=0.01):
        self.params = {}
        self.params['W1'] = weight_init_std * np.random.randn(input_size, hidden_size)
        self.params['b1'] = np.zeros(hidden_size)
        self.params['W2'] = weight_init_std * np.random.randn(hidden_size, output_size)
        self.params['b2'] = np.zeros(output_size)
  • input_sizehidden_sizeoutput_size 分别是输入层、隐藏层和输出层的神经元数目。
  • 权重 W1W2 是从正态分布中随机初始化的(通过 np.random.randn),偏置 b1b2 被初始化为零。
  • weight_init_std 是一个可选的参数,用于控制权重的初始化标准差。

2. 前向传播 (predict)

def predict(self, x):
    W1, W2 = self.params['W1'], self.params['W2']
    b1, b2 = self.params['b1'], self.params['b2']
    
    a1 = np.dot(x, W1) + b1
    z1 = sigmoid(a1)
    a2 = np.dot(z1, W2) + b2
    y = softmax(a2)
    
    return y
  • 通过 x(输入数据),计算网络的输出:
    1. a1 = np.dot(x, W1) + b1:将输入数据与第一个权重矩阵相乘并加上偏置。
    2. z1 = sigmoid(a1):对 a1 进行 Sigmoid 激活。
    3. a2 = np.dot(z1, W2) + b2:将隐藏层的输出 z1 乘以第二层的权重矩阵并加上偏置。
    4. y = softmax(a2):对第二层的结果应用 Softmax 激活,得到最终的输出概率分布。

3. 损失函数 (loss)

def loss(self, x, t):
    y = self.predict(x)
    return cross_entropy_error(y, t)
  • 使用 predict 方法计算网络的输出 y,然后计算输出与真实标签 t 之间的交叉熵损失。交叉熵损失用于评估模型预测的概率分布与实际标签之间的差异。

4. 准确率计算 (accuracy)

def accuracy(self, x, t):
    y = self.predict(x)
    y = np.argmax(y, axis=1)
    t = np.argmax(t, axis=1)
    
    accuracy = np.sum(y == t) / float(x.shape[0])
    return accuracy
  • y = np.argmax(y, axis=1):将每个样本的输出概率向量转化为类别标签(选择概率最大的位置作为预测类别)。
  • t = np.argmax(t, axis=1):将真实标签 t 也转化为类别标签。
  • 计算预测正确的样本比例,即准确率。

5. 数值梯度计算 (numerical_gradient)

def numerical_gradient(self, x, t):
    loss_W = lambda W: self.loss(x, t)
    
    grads = {}
    grads['W1'] = numerical_gradient(loss_W, self.params['W1'])
    grads['b1'] = numerical_gradient(loss_W, self.params['b1'])
    grads['W2'] = numerical_gradient(loss_W, self.params['W2'])
    grads['b2'] = numerical_gradient(loss_W, self.params['b2'])
    
    return grads
  • 通过数值梯度法(numerical_gradient)计算各个参数(权重和偏置)的梯度。
  • loss_W 是由lambda定义的一个匿名函数,计算在给定输入 x 和标签 t 下,损失函数的值。
  • numerical_gradient 用于计算每个参数的梯度,返回一个字典 grads,包含了所有权重和偏置的梯度。在反向传播过程中,numerical_gradient(loss_W, self.params['W1']) 会通过数值方法(有限差分法)计算出 loss(W)W1 的梯度。

6. 反向传播计算梯度 (gradient)

def gradient(self, x, t):
    W1, W2 = self.params['W1'], self.params['W2']
    b1, b2 = self.params['b1'], self.params['b2']
    grads = {}
    
    batch_num = x.shape[0]
    
    # forward
    a1 = np.dot(x, W1) + b1
    z1 = sigmoid(a1)
    a2 = np.dot(z1, W2) + b2
    y = softmax(a2)
    
    # backward
    dy = (y - t) / batch_num
    grads['W2'] = np.dot(z1.T, dy)
    grads['b2'] = np.sum(dy, axis=0)
    
    da1 = np.dot(dy, W2.T)
    dz1 = sigmoid_grad(a1) * da1
    grads['W1'] = np.dot(x.T, dz1)
    grads['b1'] = np.sum(dz1, axis=0)

    return grads
  • 前向传播: predict 函数中计算出神经网络的输出 y的步骤
  • 反向传播
    • 计算损失对输出层的梯度:dy = (y - t) / batch_num,这是 Softmax 层和交叉熵损失的导数。
    • 更新 W2b2:通过矩阵乘法 np.dot(z1.T, dy) 计算梯度。
    • 计算隐藏层的梯度:da1 = np.dot(dy, W2.T),然后通过 sigmoid_grada1 的梯度进行修正。
    • 更新 W1b1:使用反向传播的链式法则进行计算。

总结:

  • 前向传播 计算神经网络的输出。
  • 损失函数 计算网络预测与实际标签之间的误差。
  • 准确率 计算模型的预测准确性。
  • 数值梯度 通过数值方法估算参数的梯度。
  • 反向传播 计算每一层的梯度,利用链式法则更新权重和偏置。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2300731.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【项目】基于STM32F103C8T6的四足爬行机器人设计与实现(源码工程)

👉博__主👈:米码收割机 👉技__能👈:C/Python语言 👉专__注👈:专注主流机器人、人工智能等相关领域的开发、测试技术。 【项目】基于STM32F103C8T6的四足爬行机器人设计与…

使用DeepSeek+本地知识库,尝试从0到1搭建高度定制化工作流(自动化篇)

7.5. 配图生成 目的:由于小红书发布文章要求图文格式,因此在生成文案的基础上,我们还需要生成图文搭配文案进行发布。 原实现思路: 起初我打算使用deepseek的文生图模型Janus进行本地部署生成,参考博客:De…

#渗透测试#批量漏洞挖掘#Apache Log4j反序列化命令执行漏洞

免责声明 本教程仅为合法的教学目的而准备,严禁用于任何形式的违法犯罪活动及其他商业行为,在使用本教程前,您应确保该行为符合当地的法律法规,继续阅读即表示您需自行承担所有操作的后果,如有异议,请立即停止本文章读。 目录 Apache Log4j反序列化命令执行漏洞 一、…

HTTP FTP SMTP TELNET 应用协议

1. 标准和非标准的应用协议 标准应用协议: 由标准化组织(如 IETF,Internet Engineering Task Force)制定和维护,具有广泛的通用性和互操作性。这些协议遵循严格的规范和标准,不同的实现之间可以很好地进行…

百度搜索全面接入DeepSeek-R1满血版:AI与搜索的全新融合

不等了,就是现在!百度搜索全量接入DeepSeek-R1满血版 百度搜索已正式全量接入DeepSeek-R1满血版,在宣布“将接入”仅过了24小时后。 就在宣布“将接入”仅24小时后,百度搜索 已正式全量接入 DeepSeek-R1满血版!得益于…

nordic(nrf52832、nrf52840)如何使用SES(SEGGER Embedded Studio)编辑编译工程?

nordic官方例程中一般都会给出好几个不同的编译环境供用户选择,一般是 keil工程、armgcc工程、IAR工程、ses工程等。 一、segger embedded studio如何添加工程.h头文件? 1)首先打开options 2)下拉选中common 3)找到common下的Pre…

LabVIEW利用CANopen的Batch SDO写入

本示例展示了如何通过CANopen协议向设备写入Batch SDO(批量服务数据对象)。Batch SDO允许用户在一次操作中配置多个参数,适用于设备的批量配置和参数设置。此方法能够简化多个参数的写入过程,提高设备管理效率。 主要步骤&#xf…

python旅游推荐系统+爬虫+可视化(协同过滤算法)

✅️基于用户的协同过滤算法 ✅️有后台管理 ✅️2w多数据集 这个旅游数据分析推荐系统采用了Python语言、Django框架、MySQL数据库、requests库进行网络爬虫开发、机器学习中的协同过滤算法、ECharts数据可视化技术,以实现从网站抓取旅游数据、个性化推荐和直观展…

【弹性计算】IaaS 和 PaaS 类计算产品

《弹性计算产品》系列,共包含以下文章: 云服务器:实例、存储、网络、镜像、快照容器、裸金属云上运维IaaS 和 PaaS 类计算产品 😊 如果您觉得这篇文章有用 ✔️ 的话,请给博主一个一键三连 🚀&#x1f680…

视频转序列帧

视频转序列帧 介绍操作总结 介绍 这篇文章不是单独讲视频转序列帧所有的方法,这里是针对我后面要做序列帧动画优化的一个工具篇幅。这里我用的premiere Pro 2020下面会讲方法简称pr。 操作 打开pr点击新建项目 输入名称点击确认 将需要转换的视频导入到媒体浏览…

LLM有哪些可控超参数

LLM有哪些可控超参数 目录 LLM有哪些可控超参数生成控制类采样相关类推理优化类惩罚类其他类计算资源与批量处理类上下文与Token相关类内存相关类生成控制类 以流式返回对话响应:指模型在生成回复时,是否以逐字或逐句的流式方式返回给用户,而不是等全部生成完再返回,能提升…

算法分析—— 《归并排序》

《排序数组》 题目描述: 给你一个整数数组 nums,请你将该数组升序排列。 你必须在 不使用任何内置函数 的情况下解决问题,时间复杂度为 O(nlog(n)),并且空间复杂度尽可能小。 示例 1: 输入:nums [5,2…

SpringBoot启动时报错:cannot use an unresolved DNS server address: I:53

报错如下: 2025-02-17 13:59:41.374 [main] ERROR org.springframework.boot.SpringApplication:835 - Application run failed org.springframework.beans.factory.UnsatisfiedDependencyException: Error creating bean with name mySwaggerResourceProvider def…

AI进展不止于基准:深度解析Grok 3的局限

基准测试长期以来一直是AI评估的基石,但任何认真的AI科学家都知道它们是可以被“游戏化”的。 我曾经详细写过这个问题,甚至LMsys也不得不调整其盲测格式——将Grok 3用不同的标签代替,而不仅仅是隐藏品牌——以减少品牌偏见。 高能力AI,尤其是像GPT-4级别的模型,或那些依…

Miniconda + VSCode 的Python环境搭建

目录: 安装 VScode 安装 miniconda 在VScode 使用conda虚拟环境 运行Python程序 1.安装 vscode 编辑器 官网链接:Visual Studio Code - Code Editing. Redefined 下载得到:,双击安装。 安装成功…

防御保护选路练习

拓扑 配置 IP的基本配置 r2 [R2]int g0/0/0 [R2-GigabitEthernet0/0/0]ip add 12.0.0.2 255.255.255.0 [R2]int g0/0/2 [R2-GigabitEthernet0/0/2]ip add 210.1.1.254 255.255.255.0 [R2-GigabitEthernet0/0/2]int g0/0/1 [R2-GigabitEthernet0/0/1]ip add 200.1.1.254 255.…

AI性能极致体验:通过阿里云平台高效调用满血版DeepSeek-R1模型

前言 解决方案链接: https://www.aliyun.com/solution/tech-solution/deepseek-r1-for-platforms?utm_contentg_1000401616 DeepSeek是近期爆火的开源大语言模型(LLM),凭借其强大的模型训练和推理能力,受到越来越多…

Windows本地部署DeepSeek

文章目录 一、准备工作1、准备服务器2、准备APP 二、部署deepseek-r11、脚本部署2、脚本部署 三、ChatBox集成 一、准备工作 1、准备服务器 本案例使用Windows电脑 2、准备APP Download Ollama Download Chatbox 二、部署deepseek-r1 1、脚本部署 双击安装完Ollama,默认…

力扣高频sql 50题(基础版) :NULL, 表连接,子查询,case when和avg的结合

NULL的处理 nvl(字段,num) 和数字进行比较需要先使用nvl(字段,num)函数处理空值 思路: 没有被id 2 的客户推荐>> 过滤条件 referee_id !2 没有被id 2 的客户推荐>>被其他客户推荐, 但是也有可能没有被任何客户推荐>>NULL 考点: NULL是 不一个具体的数…

C#中File.Copy方法的参数overwrite取false和true的区别

当调用 System.IO.File.Copy 方法时,第三个参数 overwrite 控制着如果目标位置已经存在同名文件的情况下如何处理。 1、当 overwrite 设置为 true 在这种情况下,即使目标路径下已经有相同名称的文件,该方法也会无条件地覆盖现有的文件。这不…