在自然语言处理(NLP)中,数据的质量直接影响模型的表现。文本预处理的目标是清理和标准化文本数据,使其适合机器学习或深度学习模型处理。本章介绍几种常见的文本预处理方法,并通过 Python 代码进行示例。
2.1 文本清理
文本数据往往包含各种噪音,例如 HTML 标签、特殊字符、空格、数字等。清理文本可以提高模型的准确性。
常见的清理步骤
- 去除 HTML 标签
- 移除特殊字符(如
@#%$&
) - 移除数字
- 统一大小写(通常转换为小写)
- 去除多余的空格
Python 示例
import re # 正则表达式库,用于文本匹配和替换
text = "Hello, <b>world</b>! Visit us at https://example.com or call 123-456-7890."
# 1. 去除HTML标签
text = re.sub(r'<.*?>', '', text)
# 2. 去除特殊字符(保留字母和空格)
text = re.sub(r'[^a-zA-Z\s]', '', text)
# 3. 转换为小写
text = text.lower()
# 4. 去除多余空格
text = " ".join(text.split())
print(text)
输出:
hello world visit us at httpsexamplecom or call
2.2 分词(Tokenization)
分词是将文本拆分成单个的单词或子词,是 NLP 任务的基础。
常见分词方法
- 按空格拆分(适用于英文)
- NLTK 分词(更精准)
- spaCy 分词(高效处理大规模数据)
Python 示例
import nltk # 自然语言处理库,提供分词、词性标注、停用词等功能
from nltk.tokenize import word_tokenize, sent_tokenize
import spacy # 现代 NLP 库,优化分词、词性标注等任务
nltk.download('punkt_tab') # punkt_tab 是 NLTK 中的分词模型
text = "Hello world! This is an NLP tutorial."
# 1. 基础空格分词
tokens_space = text.split()
print("空格分词:", tokens_space)
# 2. 使用 NLTK 进行分词
tokens_nltk = word_tokenize(text)
print("NLTK 分词:", tokens_nltk)
# 3. 使用 spaCy 进行分词
nlp = spacy.load("en_core_web_sm") # 加载预训练的小型英文模型
doc = nlp(text)
tokens_spacy = [token.text for token in doc]
print("spaCy 分词:", tokens_spacy)
输出:
空格分词: ['Hello', 'world!', 'This', 'is', 'an', 'NLP', 'tutorial.']
NLTK 分词: ['Hello', 'world', '!', 'This', 'is', 'an', 'NLP', 'tutorial', '.']
spaCy 分词: ['Hello', 'world', '!', 'This', 'is', 'an', 'NLP', 'tutorial', '.']
注意:
- 空格分词简单但容易出错,如 “NLP tutorial.” 仍包含标点。
- NLTK 和 spaCy 处理得更精准,分离了标点符号。
2.3 词干提取(Stemming)和词形还原(Lemmatization)
在 NLP 任务中,单词的不同形式可能具有相同的含义,例如:
running
和run
better
和good
词干提取和词形还原可以将单词标准化,从而提高模型的泛化能力。
词干提取(Stemming)
词干提取是基于规则的词形归一化方法,会粗暴地去掉单词的后缀。
from nltk.stem import PorterStemmer, SnowballStemmer # 词干提取工具
stemmer = PorterStemmer() # PorterStemmer 是常用的词干提取方法
words = ["running", "flies", "easily", "studies"]
stemmed_words = [stemmer.stem(word) for word in words]
print("Porter Stemmer:", stemmed_words)
输出:
Porter Stemmer: ['run', 'fli', 'easili', 'studi']
缺点:
flies
变成了fli
easily
变成了easili
- 可能导致含义丢失
词形还原(Lemmatization)
Lemmatization 通过查找词典将单词转换为其词根形式,更加精确。
from nltk.stem import WordNetLemmatizer
import nltk
nltk.download('wordnet') # 下载 WordNet 语料库
lemmatizer = WordNetLemmatizer()
words = ["running", "flies", "easily", "studies", "better"]
lemmatized_words = [lemmatizer.lemmatize(word, pos="v") for word in words]
print("Lemmatization:", lemmatized_words)
输出:
Lemmatization: ['run', 'fly', 'easily', 'study', 'better']
优点:
flies
被正确地还原为fly
studies
被正确地还原为study
better
仍保持其正确形式
2.4 停用词(Stopwords)处理
停用词(Stopwords)是指在文本处理中不重要的高频词,如 is
, the
, and
,可以去除以减少模型计算量。
Python 示例
from nltk import word_tokenize
from nltk.corpus import stopwords # NLTK 提供的停用词库
import nltk
nltk.download('stopwords') # 下载停用词列表
text = "This is a simple NLP example demonstrating stopwords removal."
words = word_tokenize(text)
filtered_words = [word for word in words if word.lower() not in stopwords.words('english')]
print("去除停用词后:", filtered_words)
输出:
去除停用词后: ['simple', 'NLP', 'example', 'demonstrating', 'stopwords', 'removal', '.']
注意:
is
,a
,this
被去掉NLP
等关键词被保留
2.5 难点总结
- 分词的不同方法:空格分词 vs. NLTK vs. spaCy,适用于不同场景。
- 词干提取 vs. 词形还原:Stemming 可能会导致错误,而 Lemmatization 更精确但需要额外的词性信息。
- 停用词的处理:某些 NLP 任务(如情感分析)可能需要保留停用词。
2.6 课后练习
练习 1:文本清理
清理以下文本,去掉 HTML 标签、特殊字符、数字,并转换为小写:
text = "Visit our <b>website</b>: https://example.com!!! Call us at 987-654-3210."
练习 2:使用 spaCy 进行分词
使用 spaCy 对以下文本进行分词:
text = "Natural Language Processing is fun and useful!"
练习 3:词形还原
使用 Lemmatization 处理以下单词:
words = ["running", "mice", "better", "studying"]
练习 4:去除停用词
从以下文本中去除停用词:
text = "This is an example sentence demonstrating stopwords removal."