时间序列分析(三)——白噪声检验

news2025/2/13 6:22:01

 此前篇章:

时间序列分析(一)——基础概念篇

时间序列分析(二)——平稳性检验


一、相关知识点

白噪声的定义:白噪声序列是一种在统计学和信号处理中常见的随机过程,由一系列相互独立、具有相同概率分布的随机变量组成。这些随机变量之间没有任何相关性,因此在时间上是完全不相关的。这意味着序列中的每个值都是独立地从相同的概率分布中生成的。

白噪声的特性:
  • 纯随机性:白噪声序列的各项之间没有任何相关关系。

  • 方差齐性:序列中每个变量的方差都相等。

  • 均值恒定:序列的均值在时间上保持恒定。

 白噪声检验的目的
  • 判断时间序列的随机性:确定时间序列是否为纯随机序列,即是否存在可预测的模式或趋势。

  • 检测统计上显著的结构:判断时间序列中是否存在统计上显著的结构,如趋势、季节性或周期性。

  • 验证模型残差的随机性:在时间序列建模中,检验模型残差是否为白噪声,以验证模型的拟合效果。

白噪声检验的应用:
  • 时间序列分析:在时间序列分析中,白噪声检验用于判断平稳序列是否为纯随机序列。如果序列是白噪声,说明序列中没有可预测的模式,历史数据对未来的预测没有帮助。如果序列不是白噪声,说明序列中存在可预测的模式,可以进一步进行建模和预测。

  • 模型评估与选择:在时间序列建模中,白噪声检验用于验证模型残差是否为纯随机。如果残差是白噪声,说明模型已充分提取序列中的信息,模型拟合效果良好。如果残差不是白噪声,说明模型存在问题,可能需要调整参数或优化模型。

  • 金融与经济学:在金融和经济学领域,白噪声检验用于判断市场数据是否为纯随机序列。如果市场数据是白噪声,说明市场是有效的,历史数据对未来的预测没有帮助。如果市场数据不是白噪声,说明市场中存在可预测的模式,可以进一步进行投资策略的制定。

白噪声检验与平稳性检验的联系:
  • 平稳性检验:白噪声序列一定是平稳的,但平稳序列不一定是白噪声。平稳性检验是白噪声检验的前提条件。在进行白噪声检验之前,通常需要先进行平稳性检验,确保序列是平稳的。

  • 联合使用:白噪声检验和平稳性检验可以结合使用,以全面评估时间序列的特性。例如,先进行平稳性检验,确保序列是平稳的,再进行白噪声检验,判断序列是否为纯随机序列。

二、白噪声检验的方法

(一)自相关图检验

自相关图检验优缺点:直观、易于理解,但主观性强,难以量化判断。

不同情况的自相关图和偏自相关图的特点:

  • 随机序列(白噪声序列):白噪声的自相关图和偏自相关图在滞后阶数大于0时,自相关系数和偏自相关系数都会迅速衰减到0,并在0附近随机波动。在滞后阶数为0时,两种系数都为1,因为任何信号与自身的零滞后(偏)自相关系数总是1。
  • AR模型:自相关系数拖尾,偏自相关系数截尾。

  • MA模型:自相关系数截尾,偏自相关函数拖尾。

  • ARMA模型:自相关函数和偏自相关函数均拖尾。

演示图如下:

1、随机序列(白噪声序列)

2、AR模型,以AR(1)为例:

3、MA模型,以MR(1)为例:

4、ARMA模型:

(二)Box-Pierce检验(BP检验)

原理:Box-Pierce检验通过计算特定滞后阶数的自相关系数来检测序列的纯随机性。

其统计量:

 其中,n 是样本量,h 是滞后阶数,ρ^​k​ 是第 k 阶自相关系数。如果 Q 统计量大于临界值,拒绝原假设,认为序列不是白噪声。

优缺点

  • 优点:计算简单,易于实现。

  • 缺点:对滞后阶数的选择敏感,滞后阶数过小可能导致检验结果不准确。

(三)Ljung-Box检验 (LB检验)

原理: Ljung-Box检验是对Box-Pierce检验的改进,适用于大样本场合。

其统计量:

 其中,n 是样本量,h 是滞后阶数,ρ^​k​ 是第 k 阶自相关系数。如果 Q 统计量大于临界值,拒绝原假设,认为序列不是白噪声。

优缺点

  • 优点:适用于大样本,检验功效较高。

  • 缺点:计算相对复杂,滞后阶数的选择对检验结果有影响。

(四)三种方法特点小结

自相关图检验:直观、易于理解,但主观性强,难以量化判断。

Box-Pierce检验:计算简单,易于实现,但对滞后阶数的选择敏感。

Ljung-Box检验:适用于大样本,检验功效较高,但计算相对复杂,滞后阶数的选择对检验结果有影响。

三、白噪声检验的注意事项

检验的局限性:白噪声检验只能判断序列是否为纯随机序列,不能判断序列中是否存在其他类型的结构,如趋势、季节性或周期性。在实际应用中,需要结合其他检验方法,如平稳性检验、趋势检验等,进行全面分析。

数据预处理:在进行白噪声检验之前,需要对数据进行预处理,如去除趋势、季节性等,以确保检验结果的准确性。

滞后阶数的选择:在进行Ljung-Box检验时,滞后阶数的选择对检验结果有影响。滞后阶数过小可能导致检验结果不准确,滞后阶数过大可能导致检验结果过于保守。在实际应用中,可以根据数据的特性和检验目的选择合适的滞后阶数。

# 文章如有错误,欢迎大家指正。我们下期再见。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2297206.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

[前端] axios网络请求二次封装

一、场景描述 为什么要对axios网络请求进行二次封装? 解决代码的复用,提高可维护性。 —这个有两个方案:一个是二次封装一个是实例化。(设置一些公共的参数,然后进行请求) 为什么可以解决代码的复用: 这是…

【学术投稿-2025年计算机视觉研究进展与应用国际学术会议 (ACVRA 2025)】CSS样式解析:行内、内部与外部样式的区别与优先级分析

简介 2025年计算机视觉研究进展与应用(ACVRA 2025)将于2025年2月28-3月2日在中国广州召开,会议将汇聚世界各地的顶尖学者、研究人员和行业专家,聚焦计算机视觉领域的最新研究动态与应用成就。本次会议将探讨前沿技术,…

麒麟信安系统隔核后iperf网络测试影响说明

1、背景介绍 采用麒麟信安系统,在飞腾平台(X86平台类似)上进行了系统核隔离,修改了grub.cfg配置文件中的启动项增加isolcpus2-63 操作,隔核后发现40G网络iperf测试存在影响。 测试命令 taskset -c 16-23 iperf -s -…

WPF进阶 | WPF 资源管理与本地化:多语言支持与资源复用

WPF进阶 | WPF 资源管理与本地化:多语言支持与资源复用 前言一、WPF 资源管理基础1.1 什么是 WPF 资源1.2 资源的定义与存储位置1.3 资源的引用方式 二、资源字典的深入应用2.1 创建资源字典2.2 在应用程序中合并资源字典2.3 资源字典的层级结构与合并顺序 三、WPF …

数据结构与算法-动态规划-区间dp(石子合并,环形石子合并,凸多边形的划分,加分二叉树,棋盘分割)

概念 区间动态规划(Interval Dynamic Programming)是动态规划的一个分支,它在处理一些与区间相关的最优解问题上非常有效。以下从基本概念、解题步骤、经典例题、优缺点等方面为你详细介绍: 基本概念:区间 DP 的核心…

32单片机学习记录4之串口通信

32单片机学习记录4之串口通信 前置 STM32的GPIO口有通用模式,复用模式,模拟模式三种,加上输入输出就是有6中对应的模式。 我学习了通用模式,会使用GPIO口使用一些简单外设,如LED,独立按键,红外…

开源、免费项目管理工具比较:2025最新整理30款

好用的开源、免费版项目管理系统有:1.Redmine;2. Taiga;3. OpenProject; 4.ProjectLibre; 5.GanttProject; 6.Tuleap; 7.Trac;8. Phabricator; 9.Notion; 10.…

Android10 音频参数导出合并

A10 设备录音时底噪过大,让音频同事校准了下,然后把校准好的参数需要导出来,集成到项目中,然后出包,导出方式在此记录 设备安装debug系统版本调试好后, adb root adb remount adb shell 进入设备目录 导…

在 Azure 上部署 DeepSeek 并集成 Open WebUI

DeepSeek 是杭州深度求索人工智能基础技术研究有限公司发布的开源大模型,最近是持续火爆,使得官方服务经常不可用。网上各种本地部署和私有部署的文章已经很多,这里我们提供一个全部基于 Azure 的私有部署方案。 使用 Azure AI Foundry 部署…

Springboot整合支付宝支付

支付宝支付功能 步骤一:沙箱配置支付宝沙箱配置 步骤二:使用内网穿透步骤三:开始对接SDK配置文件支付 步骤一:沙箱配置 支付宝沙箱配置 需要有支付宝沙箱:提供一个虚拟的支付环境,用于测验调试&#xff0…

deepseek+kimi一键生成PPT

1、deepseek生成大纲内容 访问deepseek官方网站:https://www.deepseek.com/ 将你想要编写的PPT内容输入到对话框,点击【蓝色】发送按钮,让deepseek生成内容大纲,并以markdown形式输出。 等待deepseek生成内容完毕后&#xff0c…

基于ssm的超市订单管理系统

一、系统架构 前端:jsp | web components | jquery | css | ajax 后端:spring | springmvc | mybatis 环境:jdk1.8 | mysql | maven | tomcat 二、代码及数据 三、功能介绍 01. 登录 02. 首页 03. 订单管理 04. 供应…

AnyPlace:学习机器人操作的泛化目标放置

25年2月来自多伦多大学、Vector Inst、上海交大等机构的论文“AnyPlace: Learning Generalized Object Placement for Robot Manipulation”。 由于目标几何形状和放置的配置多种多样,因此在机器人任务中放置目标本身就具有挑战性。为了解决这个问题,An…

【DeepSeek】在本地计算机上部署DeepSeek-R1大模型实战(完整版)

【作者主页】Francek Chen 【专栏介绍】 ⌈ ⌈ ⌈人工智能与大模型应用 ⌋ ⌋ ⌋ 人工智能(AI)通过算法模拟人类智能,利用机器学习、深度学习等技术驱动医疗、金融等领域的智能化。大模型是千亿参数的深度神经网络(如ChatGPT&…

基于全志T507的边缘计算机,推动光伏电站向智能运维转型

智能监控与维护 光伏电站通常分布在广阔的地域内,传统的监控方式往往需要大量的人力物力进行现场检查和数据采集。采用全志T507为核心的嵌入式工控机或边缘计算控制器可以实现光伏电站的实时监测,通过连接传感器网络收集电站各个组件的工作状态信息&…

用户认证练习实验

一.拓扑 二.sw2配置 三.ip配置 四.dhcp分配IP地址 五.安全区域配置 六.防火墙地址组信息 七.管理员 创建管理员角色 创建管理员 启动tenlnet 八.用户认证配置 认证策略 九.安全策略配置

【登录认证】

目录 一. 会话技术1.1 cookie1.2 session1.3 令牌方案 二. JWT令牌三. 过滤器Filter四. 拦截器Interceptor \quad 一. 会话技术 \quad \quad 1.1 cookie \quad \quad 1.2 session \quad \quad 1.3 令牌方案 \quad \quad 二. JWT令牌 \quad \quad 三. 过滤器Filter \quad \quad …

DeepSeek 赋能智慧教育 | 讯方“教学有方”大模型全面接入 DeepSeek!

国产 DeepSeek 大模型以强大的深度学习能力和广泛应用场景迅速火爆全球,其在智能对话、文本创作、语义解析、计算推理、代码生成与补全等多个应用领域,展现出了无与伦比的实力和魅力。2月10日 ,由讯方技术自研的教育行业大模型“教学有方”全…

Unity中自定义协程的简单实现

在 Unity 中,协程(Coroutine)是一种非常强大的工具,它允许我们在不阻塞主线程的情况下,将代码的执行分成多个步骤,在不同的帧中执行。 Unity中协程实现原理 迭代器与状态机:本质上是基于C#的迭…

打开Visual Studio Code的时候发现未检测到适用于linux的windows子系统,那么该问题要如何解决?

两个月没有使用vscode编写代码,今天使用的时候发现了以上的问题导致我的vscode无法编写程序,接下来我将本人解决该问题的思路分享给大家。 首先我们要清楚WSL是适用于linux的window的子系统,是一个在Windows 10\11上能够运行原生Linux二进制可…