【DeepSeek】在本地计算机上部署DeepSeek-R1大模型实战(完整版)

news2025/2/13 5:51:02

在这里插入图片描述

【作者主页】Francek Chen
【专栏介绍】 ⌈ ⌈ 人工智能与大模型应用 ⌋ ⌋ 人工智能(AI)通过算法模拟人类智能,利用机器学习、深度学习等技术驱动医疗、金融等领域的智能化。大模型是千亿参数的深度神经网络(如ChatGPT),经海量数据训练后能完成文本生成、图像创作等复杂任务,显著提升效率,但面临算力消耗、数据偏见等挑战。当前正加速与教育、科研融合,未来需平衡技术创新与伦理风险,推动可持续发展。

文章目录

    • 前言
    • 一、为什么需要本地部署大模型
    • 二、DeepSeek R1简介
      • DeepSeek-R1 Models
      • DeepSeek-R1-Distill Models
    • 三、在本地计算机部署DeepSeek R1
      • (一)安装Ollama
      • (二)下载DeepSeek R1
      • (三)运行DeepSeek R1
      • (四)安装Python
      • (五)安装Microsoft Visual C++ Build Tools
      • (六)使用Open WebUI增强交互体验
      • (七)每次使用大模型的步骤
      • (八)取消Ollama的开机自动启动
    • 小结


前言

Homepage

2025年1月,中国春节期间,DeepSeek爆火,称为全球最炙手可热的大模型。DeepSeek一路 “狂飙”,在美国科技界和美股市场掀起惊涛骇浪,1月27日,美国三大股指开盘即暴跌,英伟达、微软、谷歌母公司Alphabet、Meta等美国主要科技股均遭遇股市地震,其中英伟达跌近17%,单日市值蒸发约6000亿美元,创美股最高纪录。

这里以DeepSeek为例介绍在自己本地计算机上部署大模型的方法。操作过程中,遇到很多错误,借助于豆包大模型,把每个错误都解决了,顺利完成了安装过程。我的笔记本电脑是Windows10操作系统。实际上,只要电脑具有8GB内存和30GB可用磁盘空间即可安装最小版本的DeepSeek R1大模型。

特别强调,在自己本地计算机上部署DeepSeek R1大模型,不需要读者具备任何计算机基础知识,也不需要掌握任何编程知识,只要会使用Windows操作系统就可以,按照本文给出的步骤,一步步执行,就可以顺利完成所有操作。

一、为什么需要本地部署大模型

一般而言,DeepSeek、文心一言、豆包、Kimi等在线的大模型,功能非常强大,完全可以很好满足我们的需求。所以,大多数情况下,我们不需要在本地部署大模型。但是,当我们需要保护个人数据隐私时,也可以考虑在本地部署大模型。

和直接使用在线大模型(豆包、Kimi等)相比,在本地部署大模型具有以下优势:

  1. 数据隐私与安全性。第一,数据本地存储:所有数据运算和存储均在本地完成,不会上传至云端,有效避免了数据在传输和云端存储过程中可能带来的隐私泄露风险。第二,完全掌控数据:用户可以完全掌控数据的使用和存储,确保数据不被未经授权的访问或用于其他目的。第三,隐私保护机制:支持访问权限控制,进一步增强数据安全性。
  2. 定制化与灵活性。第一,自定义知识库训练:用户可以根据自己的需求对模型进行自定义知识库训练,进一步提升模型在特定领域的性能。第二,灵活调整模型参数:根据业务需求灵活调整模型参数和功能,满足不同场景下的个性化需求。第三,开源灵活性:开源模型一般都允许用户无限制地进行微调或将其集成到自己的项目中。
  3. 离线与高效使用。第一,离线访问:本地部署后,无需依赖网络连接,适合旅行或网络不稳定的场景,随时随地可用。第二,避免服务器繁忙:再也不用担心“服务器繁忙”的问题,提升使用体验。
  4. 成本与资源优化。第一,成本可控:长期使用比云服务更经济,尤其适合高频调用场景。第二,硬件友好:对硬件资源要求较低,可在较少GPU或高级CPU集群上运行,资源效率显著。
  5. 避免使用限制。本地部署避免了可能出现的使用限制,不受未来商业化影响,可永久免费使用。通过本地部署开源大模型,用户不仅能够享受强大的AI功能,还能在数据隐私、定制化需求和使用成本等方面获得显著优势。

二、DeepSeek R1简介

首先需要说明的是,大模型的训练过程需要耗费大量的计算资源(比如投入上亿元构建计算机集群去训练大模型),训练成本比较昂贵,个人是无法承担的。但是,训练得到的大模型,部署到计算机上,就不需要那么高的计算资源要求。但是,即使如此,在DeepSeek出现之前,很多市场上的大模型产品都是“贵族”模型,“段位”很高,通常需要依赖高端的硬件,配置大量的GPU,普通个人计算机一般很难运行大模型。2025年1月20日,我国杭州深度求索公司的DeepSeek R1大模型正式发布,它是一个基于深度学习的推荐系统模型,通常用于处理推荐任务,如商品推荐、内容推荐等。

Deepseek R1的发布,标志着大模型产品的“平民”时代已经到来,它大大降低了对计算机硬件的要求,可以部署在普通的个人计算机上,甚至部署在手机等便携式设备中。Deepseek采用了较为简洁高效的模型架构,去除了一些不必要的复杂结构和计算,在保证模型性能的基础上,降低了对计算资源的需求,使模型在本地计算机上运行更加轻松。通过先进的量化压缩技术,Deepseek将模型的参数进行压缩存储和计算,大大减少了模型所需的存储空间和计算量。2025年1月30日,微软公司宣布支持在Win11电脑本地运行DeepSeek R1大模型。

DeepSeek R1对硬件资源比较友好,对不同硬件配置有良好的适应性,能根据用户计算机硬件配置选择合适的模型版本。入门级设备拥有4GB 存和核显就能运行1.5B(Billion,十亿,大模型参数的数量)版本;进阶设备8GB内存搭配4GB显存就能驾驭7B版本;高性能设备则可选择32B版本。而且,DeepSeek R1支持低配置电脑,即使是没有独立显卡的低配置电脑,只要有足够的空余硬盘空间,如部署最大的6710亿参数的大模型需要至少1TB的空余空间,也能完成部署。

DeepSeek R1可以满足用户的数据隐私需求,本地部署能将所有数据运算都限制在本地,数据不会上传至云端,可有效避免数据传输和存储在云端可能带来的隐私泄露风险,满足用户对数据安全和隐私保护的要求。DeepSeek R1还可以满足定制需求,用户可以根据自己的需求对模型进行自定义知识库训练,进一步提升模型在特定领域的性能。

我们介绍了我们的第一代推理模型DeepSeek-R1-zero和DeepSeek-R1。DeepSeek-R1-Zero是一个通过大规模强化学习(RL)训练的模型,没有监督微调(SFT)作为初步步骤,在推理方面表现出卓越的性能。有了强化学习,DeepSeek-R1-Zero自然就出现了许多强大而有趣的推理行为。然而,DeepSeek-R1-Zero遇到了诸如无休止的重复、可读性差和语言混合等挑战。为了解决这些问题并进一步提高推理性能,引入了DeepSeek-R1,它在强化学习之前包含了冷启动数据。DeepSeek-R1在数学、代码和推理任务方面的性能可与OpenAI-o1媲美。为了支持研究社区,目前开源了DeepSeek-R1-Zero,DeepSeek-R1,以及基于Llama和Qwen的DeepSeek-R1提炼的六个密集模型。DeepSeek-R1-Distill-Qwen-32B在各种基准测试中优于OpenAI-o1-mini,为密集模型实现了新的最先进的结果。

在这里插入图片描述

图1 AI模型在多项任务中的表现对比

DeepSeek以开源的特性和极低的成本,在数学、编程、自然语言推理等任务上表现出色,性能不亚于美国顶级AI模型。特别是DeepSeek-R1,通过创新性运用强化学习技术,以极少量标注数据实现了推理能力的跨越式提升。在数学、编程、语言理解等核心能力上,完美比肩OpenAI-o1。这一系列创新成果不仅得到了行业的广泛认可,也让世界看到了中国AI技术的崛起之势。

DeepSeek-R1 Models

Model#Total Params#Activated ParamsContext LengthDownload
DeepSeek-R1-Zero671B37B128K🤗 HuggingFace
DeepSeek-R1671B37B128K🤗 HuggingFace

DeepSeek-R1- zero和DeepSeek-R1是基于DeepSeek-V3-Base训练的。关于模型架构的更多细节,请参考DeepSeek-V3存储库。

DeepSeek-R1-Distill Models

ModelBase ModelDownload
DeepSeek-R1-Distill-Qwen-1.5BQwen2.5-Math-1.5B🤗 HuggingFace
DeepSeek-R1-Distill-Qwen-7BQwen2.5-Math-7B🤗 HuggingFace
DeepSeek-R1-Distill-Llama-8BLlama-3.1-8B🤗 HuggingFace
DeepSeek-R1-Distill-Qwen-14BQwen2.5-14B🤗 HuggingFace
DeepSeek-R1-Distill-Qwen-32BQwen2.5-32B🤗 HuggingFace
DeepSeek-R1-Distill-Llama-70BLlama-3.3-70B-Instruct🤗 HuggingFace

DeepSeek-R1-Distill模型基于开源模型进行微调,使用DeepSeek-R1生成的样本。稍微改变了它们的配置和标记器。

三、在本地计算机部署DeepSeek R1

本节将详细介绍如何通过Ollama和Open WebUI在本地计算机环境中部署DeepSeek R1大模型。本地计算机至少需要8GB内存和30GB剩余磁盘空间。

(一)安装Ollama

Ollama是一个开源的本地化大模型部署工具,旨在简化大型语言模型(LLM)的安装、运行和管理。它支持多种模型架构,并提供与OpenAI兼容的API接口,适合开发者和企业快速搭建私有化AI服务。

访问Ollama官网(https://ollama.com/), 点击“Download”(如图2所示),根据操作系统(Windows、macOS或Linux)下载自己操作系统对应的安装包(如图3所示),比如,Windows用户可以点击“Windows”图标,然后,点击“Download for Windows”下载安装包。需要注意的是,对于Windows系统,这里仅支持Windows10及其以上版本。

在这里插入图片描述

图2 Ollama官网下载

在这里插入图片描述

图3 下载Windows版本Ollama

下载完成以后,双击安装包文件“OllamaSetup.exe”完成安装。安装完成后,在Windows系统中,输入快捷键Win + R,再在弹出的对话框中输入“cmd”并回车,打开cmd命令行工具窗口,输入以下命令验证是否安装成功:

ollama --version

如果显示Ollama版本号,说明安装成功(如图4所示)。

在这里插入图片描述

图4 Ollama安装成功

(二)下载DeepSeek R1

Ollama已经在第一时间支持DeepSeek R1,模型下载地址是https://ollama.com/library/deepseek-r1。 请根据自己的显存选择对应的模型,建议选择参数较少、体积最小的1.5B版本(如果计算机的配置较高,也可以选择参数较大的版本),这里的B是英文Billion(十亿),表示参数模型的参数规模,1.5B表示大模型的参数量是15亿。

在这里插入图片描述

图5 下载DeepSeek R1

当然,我们可以不用到这个下载地址手动下载,只需要在cmd命令行窗口中执行如下命令就可以自动下载DeepSeek R1大模型:

ollama run deepseek-r1:1.5b

该命令会自动下载并加载模型,下载时间取决于网络速度和模型大小。注意,如果在下载过程中,出现长时间停滞不动,可以敲击几次回车键。下载完成后,可以使用以下命令查看模型信息:

ollama list

该命令会列出本地已下载的模型及其状态。

(三)运行DeepSeek R1

可以在cmd命令行窗口中执行如下命令启动DeepSeek R1大模型:

ollama run deepseek-r1:1.5b

启动后,模型会进入交互模式,用户可以直接输入问题并获取回答。在交互模式下,可以测试DeepSeek R1的多种功能(如图6所示),例如:

  • 智能客服:输入常见问题,如“如何学习人工智能?”。
  • 内容创作:输入“请为我撰写一篇介绍沙县小吃的宣传文案”。
  • 编程辅助:输入“用Python绘制一个柱状图”。
  • 教育辅助:输入“解释牛顿第二定律”。

在这里插入图片描述

图6 测试DeepSeek R1的功能

cmd窗口关闭以后,DeepSeek R1大模型就停止运行了。下次再次使用时,需要再次在cmd窗口中执行如下命令启动DeepSeek R1大模型:

ollama run deepseek-r1:1.5b

这种以命令行的方式与大模型进行对话,显然不太友好,因此,下面介绍如何通过浏览器来与大模型进行对话,这里就需要安装Open WebUI,由于Open WebUI依赖于Python环境,因此,在安装Open WebUI之前,需要首先安装Python环境(注意,只是需要安装Python环境,并不需要学习Python语言,读者可以完全不会Python语言,大模型的安装和使用过程完全不会用到Python语言)。如果读者没有使用浏览器与大模型对话的需求,可以不用学习下面的安装步骤。

(四)安装Python

Python(发音[ˈpaɪθən])是1989年由荷兰人吉多·范罗苏姆(Guido van Rossum)发明的一种面向对象的解释型高级编程语言。Python的第一个公开发行版于1991年发行,在2004年以后,Python的使用率呈线性增长,并获得“2021年TIOBE最佳年度语言”称号,这是Python第5次被评为“TIOBE最佳年度语言”,它也是获奖次数最多的编程语言。发展到今天,Python已经成为最受欢迎的程序设计语言之一。

Python可以用于多种平台,包括Windows、Linux和MacOS等。这里使用的Python版本是3.12.2(该版本于2024年2月6日发布),不要安装最新的3.13版本。请到Python官方网站下载(官网下载地址)与自己计算机操作系统匹配的安装包,比如,64位Windows操作系统可以下载python-3.12.2-amd64.exe。运行安装包开始安装,在安装过程中,要注意选中“Add python.exe to PATH”复选框,如图7所示,这样可以在安装过程中自动配置PATH环境变量,避免了手动配置的烦琐过程。

在这里插入图片描述

图7 下载Python安装包

然后,点击“Customize installation”继续安装,在选择安装路径时,可以自定义安装路径,比如设置为“C:\python312”,并在“Advanced Options”下方选中“Install Python 3.12 for all users”(如图8所示)。

在这里插入图片描述

图8 安装Python 3.12

安装完成以后,需要检测是否安装成功。可以打开Windows操作系统的cmd命令界面,然后执行如下命令打开Python解释器:

cd C:\python312
python

如果出现图9所示信息,则说明Python已经安装成功。

在这里插入图片描述

图9 Python 3.12安装成功

(五)安装Microsoft Visual C++ Build Tools

备注:对于不同的计算机环境,本步骤可能不是必须的,读者可以先跳到第6步继续操作,如果在下面的第6步遇到报错信息说“缺少Microsoft Visual C++ Build Tools”,可以再回到本步骤安装Microsoft Visual C++ Build Tools,然后再执行第6步的安装。

在安装Open WebUI之前,在有些计算机上可能还需要安装Microsoft Visual C++ Build Tools,否则,安装Open WebUI过程会报错。可以到如下网址下载该工具安装包vs_BuildTools.exe:https://visualstudio.microsoft.com/zh-hans/visual-cpp-build-tools/

下载完成以后,双击安装包文件vs_BuildTools.exe进行安装,在弹出的安装界面中(如图10所示),在界面左上角的“桌面应用和移动应用”下方,选中“使用C++的桌面开发”,然后,点击界面右下角的“安装”按钮,完成安装。

在这里插入图片描述

图10 安装Microsoft Visual C++ Build Tools

(六)使用Open WebUI增强交互体验

只要是支持Ollama的WebUI都可以,如Dify、AnythingLLM等。这里使用比较简单而且也是与Ollama结合比较紧密的Open WebUI。

可以在cmd命令行窗口中执行如下命令安装Open WebUI(这里使用国内清华大学的安装源镜像,这样可以加快安装速度):

pip install open-webui -i https://pypi.tuna.tsinghua.edu.cn/simple

注意,如果在下载和安装过程中,出现长时间停滞不动,可以敲击几次回车键。

可以执行如下命令启动Open WebUI服务:

open-webui serve

注意,如果启动以后,看到下面界面(如图11所示),说明还没有启动成功,需要继续等待。可以敲击几次回车。

在这里插入图片描述

图11 启动Open WebUI

在继续等待过程中,可能屏幕上会出现一些错误信息,里面会包含如下内容:

requests.exceptions.ConnectTimeout: (MaxRetryError("HTTPSConnectionPool(host='huggingface.co', port=443)

这个错误信息说明,启动过程连接Hugging Face Hub失败。Hugging Face Hub网站在国外,所以,经常会连接失败,所以,导致open-webui启动过程始终停止不动。

直到出现下面屏幕信息以后(如图12所示),才说明启动成功了。

在这里插入图片描述

图12 Open WebUI启动成功

启动后,在浏览器中访问http://localhost:8080/即可进入Open WebUI界面。如果网页显示“拒绝连接”,无法访问Open WebUI界面,一般是由于你的计算机开启了Windows防火墙,可以点击“开始”菜单按钮,在弹出的界面中,在顶部的搜索框中输入“安全中心”(如图13所示),打开“Windows安全中心”,点击左侧的“防火墙和网络保护”,在右侧的“域网络”中,关闭防火墙。

在这里插入图片描述

图13 关闭防火墙

Open WebUI支持中文界面,可以在设置中调整语言,默认是你的Windows系统当前正在使用的语言。首先,需要注册一个管理员账号(如图14所示),然后,就可以开始使用了。

在这里插入图片描述

图14 注册管理员账号

在Open WebUI界面中,选择已下载的DeepSeek R1模型,即可开始对话测试。如图15所示,可以在对话框中输入“请介绍如何学习人工智能”然后回车,页面就会给出DeepSeek R1的回答结果(如图16所示)。

在这里插入图片描述

图15 开启对话

在这里插入图片描述

图16 对话结果

(七)每次使用大模型的步骤

当我们本次使用完大模型时,只需要关闭各个cmd命令行窗口,大模型就停止运行了。下次要再次使用时,还是按照一样的步骤进行操作:

1. 启动大模型
新建一个cmd命令行窗口,在cmd命令行窗口中执行如下命令启动DeepSeek R1大模型:

ollama run deepseek-r1:1.5b

2. 启动Open WebUI

再新建一个cmd命令行窗口,在cmd命令行窗口中执行如下命令启动Open WebUI服务:

open-webui serve

3. 在浏览器中访问大模型

在浏览器中访问http://localhost:8080/即可进入Open WebUI界面,开始使用大模型。

(八)取消Ollama的开机自动启动

前面步骤已经完成了DeepSeek R1大模型的部署,但是,你会发现,每次计算机关机以后,再次启动计算机时,Ollama会开机自动启动,导致占用计算机系统资源。当我们平时不使用DeepSeek R1时,为了让Ollama不占用计算机系统资源,我们需要禁止Ollama开机自动启动。

在Windows10系统中,输入快捷键Win + R,再在弹出的对话框中输入“msconfig”并回车,进入如图17所示系统设置界面,点击“启动”选项卡,在这个选项卡中点击“打开任务管理器”,进入如图18所示的任务管理器界面,在界面中,找到“ollama.exe”,把鼠标指针放到“已启动”上面,单击鼠标右键,在弹出的菜单中点击“禁用”,然后关闭任务管理器界面。经过这样设置以后,Ollama以后就不会开机自动启动了。

在这里插入图片描述

图17 进入系统配置界面

在这里插入图片描述

图18 禁用ollama.exe

下次在使用DeepSeek时,仍然采用之前介绍的方法,在cmd命令行窗口中执行如下命令启动DeepSeek R1大模型:

ollama run deepseek-r1:1.5b

小结

本文详细介绍了如何在本地计算机上部署DeepSeek R1大模型,主要针对普通用户和开发者,提供了一个简便的安装流程,并强调了本地部署大模型的优势。首先,介绍了为什么需要本地部署大模型,包括数据隐私与安全、定制化与灵活性、离线使用、高效性、成本可控等多方面的优势。相比于在线大模型,本地部署能够有效保护用户的隐私数据,避免信息泄露,并允许用户根据实际需求对模型进行定制和调整,提升使用体验。

接着,介绍了DeepSeek R1大模型的基本概念及其发布背景。DeepSeek R1是一个具有高效、低资源消耗特性的推荐系统模型,其优化了对计算资源的要求,使得普通的个人计算机也能承载其运行。特别是DeepSeek R1支持不同硬件配置的设备,适配不同规模的用户需求。这一创新使得大规模AI模型的使用不再局限于高端硬件环境,普通用户也能在本地计算机上运行。

本文核心部分详细讲解了通过Ollama和Open WebUI等工具进行DeepSeek R1部署的步骤。从安装Ollama开始,用户只需按照简单的命令行操作,便能轻松完成模型的下载与运行。而对于更复杂的需求,如通过浏览器与模型进行互动,用户可以安装Python环境并结合Open WebUI实现更友好的操作界面。这一部分的讲解深入浅出,即便没有编程经验的用户也能轻松上手,按照步骤完成安装与配置。

此外,还提到一些可能遇到的问题及其解决方案,确保用户在遇到问题时能够找到对应的解决方法。例如,针对下载过程中可能的停滞,提供了按回车键的操作提示;对于启动失败的情况,也给出了详细的排查步骤。通过这些细致的提示,有效降低了用户操作的复杂度和失败率。

总结来说,本文为普通用户提供了一个清晰、易懂的指南,帮助他们在本地计算机上部署并运行DeepSeek R1大模型。它不仅展示了如何通过简单的工具和命令实现AI技术的本地化使用,也进一步说明了大模型应用的普及和便利性。通过这篇文章,用户可以充分理解并享受到本地部署大模型带来的数据安全、定制化、离线使用等多方面的优势,促进了AI技术的民主化。

欢迎 点赞👍 | 收藏⭐ | 评论✍ | 关注🤗

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2297182.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于全志T507的边缘计算机,推动光伏电站向智能运维转型

智能监控与维护 光伏电站通常分布在广阔的地域内,传统的监控方式往往需要大量的人力物力进行现场检查和数据采集。采用全志T507为核心的嵌入式工控机或边缘计算控制器可以实现光伏电站的实时监测,通过连接传感器网络收集电站各个组件的工作状态信息&…

用户认证练习实验

一.拓扑 二.sw2配置 三.ip配置 四.dhcp分配IP地址 五.安全区域配置 六.防火墙地址组信息 七.管理员 创建管理员角色 创建管理员 启动tenlnet 八.用户认证配置 认证策略 九.安全策略配置

【登录认证】

目录 一. 会话技术1.1 cookie1.2 session1.3 令牌方案 二. JWT令牌三. 过滤器Filter四. 拦截器Interceptor \quad 一. 会话技术 \quad \quad 1.1 cookie \quad \quad 1.2 session \quad \quad 1.3 令牌方案 \quad \quad 二. JWT令牌 \quad \quad 三. 过滤器Filter \quad \quad …

DeepSeek 赋能智慧教育 | 讯方“教学有方”大模型全面接入 DeepSeek!

国产 DeepSeek 大模型以强大的深度学习能力和广泛应用场景迅速火爆全球,其在智能对话、文本创作、语义解析、计算推理、代码生成与补全等多个应用领域,展现出了无与伦比的实力和魅力。2月10日 ,由讯方技术自研的教育行业大模型“教学有方”全…

Unity中自定义协程的简单实现

在 Unity 中,协程(Coroutine)是一种非常强大的工具,它允许我们在不阻塞主线程的情况下,将代码的执行分成多个步骤,在不同的帧中执行。 Unity中协程实现原理 迭代器与状态机:本质上是基于C#的迭…

打开Visual Studio Code的时候发现未检测到适用于linux的windows子系统,那么该问题要如何解决?

两个月没有使用vscode编写代码,今天使用的时候发现了以上的问题导致我的vscode无法编写程序,接下来我将本人解决该问题的思路分享给大家。 首先我们要清楚WSL是适用于linux的window的子系统,是一个在Windows 10\11上能够运行原生Linux二进制可…

Linux(socket网络编程)TCP连接

Linux(socket网络编程)TCP连接 基础文件目录函数系统进程控制函数fork()exec系列函数void abort(void)void assert(int expression)void exit(int status)void _exit(int status)int atexit(void (*func)(void))int on_exit(void (*function)(int,void*)…

Rust学习总结之所有权(一)

不管是计算机的哪种语言,都有内存的管理方式。主流有两种,一是以C为代表的由开发者来决定申请和释放内存,二是以Python为代表的通过语言本身的垃圾回收机制来自动管理内存。Rust开辟了第三种方式,通过所有权系统管理内存。 Rust所…

汇编简介常用语法

为什么要有汇编 因为Cortex-A芯片一上电SP指针还没初始化,C环境还没准备 好,所以肯定不能运行C代码,必须先用汇编语言设置好C环境,比如初始化DDR、设置SP 指针等等,当汇编把C环境设置好了以后才可以运行C代码 GNU语法…

ANR学习

一、ANR 概述 ANR 是 Android 系统用于监控应用是否及时响应的关键机制。形象地说,如同设置定时炸弹场景:系统的中控系统(system_server 进程)启动倒计时,若应用进程在规定时间内未完成特定任务,中控系统将…

Tcp_socket

Tcp不保证报文完整性(面向字节流) 所以我们需要在应用层指定协议,确保报文完整性 // {json} -> len\r\n{json}\r\n bool Encode(std::string &message) {if(message.size() 0) return false;std::string package std::to_string(m…

< 自用文儿 > 在 Ubuntu 24 卸载 Docker 应用软件与运行的容器

环境: Host: usw OS: Ubuntu 24.04 TLS 目标: 卸载在运行的 Docker APP。 (上运行了一个 container: 可以在线看 WSJ RSS 新闻,都 docker 预装两个网口,今天发现路由表有些看不懂,决定卸载) 卸载 Dock…

基于 SpringBoot 和 Vue 的智能腰带健康监测数据可视化平台开发(文末联系,整套资料提供)

基于 SpringBoot 和 Vue 的智能腰带健康监测数据可视化平台开发 一、系统介绍 随着人们生活水平的提高和健康意识的增强,智能健康监测设备越来越受到关注。智能腰带作为一种新型的健康监测设备,能够实时采集用户的腰部健康数据,如姿势、运动…

Python的那些事第十八篇:框架与算法应用研究,人工智能与机器学习

人工智能与机器学习:框架与算法应用研究 摘要 本文深入探讨了人工智能与机器学习领域的核心框架和技术,包括TensorFlow、PyTorch和Scikit-learn库。文章首先介绍了TensorFlow和PyTorch的安装与配置方法,详细阐述了它们的基础概念&#xff0c…

java微服务常用技术

Spring Cloud Alibaba 1 系统架构演进 随着互联网行业的发展,对服务的要求也越来越高,服务架构也从单体架构逐渐演变为现在流行的微服务架构。 1.1 单体架构 早期的软件系统通常是基于单体应用架构设计的,也就是将整个系统作为一个单一的、可执行的应用程序来构建和维护…

【Qt 常用控件】多元素控件(QListWidget、QTabelWidgt、QTreeWidget)

**View和**Widget的区别? **View的实现更底层,**Widget是基于**View封装实现的更易用的类型。 **View使用MVC结构 MVC是软件开发中 经典的 软件结构 组织形式,软件设计模式。 M(model)模型。管理应用程序的核心数据和…

解决VsCode的 Vetur 插件has no default export Vetur问题

文章目录 前言1.问题2. 原因3. 解决其他 前言 提示: 1.问题 Cannot find module ‘ant-design-vue’. Did you mean to set the ‘moduleResolution’ option to ‘node’, or to add aliases to the ‘paths’ option? Module ‘“/xxx/xxx/xxx/xxx/xxx/src/vie…

python制作自己的一款Markdowm格式消除工具

01 引言 在日常使用 Markdown 编写文档时,我们有时会需要将 Markdown 格式的文本转换为纯文本,去除其中的各种标记符号,如标题符号、列表符号、代码块标记等。手动去除这些标记不仅效率低下,还容易出错。本文将介绍如何使用 Pyt…

如何从头训练大语言模型: A simple technical report

今天来快速捋一下路线,写个简短的technical report,更多是原理介绍性的。按我个人理解,从最简单的部分开始,逐步过渡到最繁复的环节: 模型架构-> Pretrain -> Post-Train -> Infra -> 数据侧。再掺杂一些杂项&#xf…

gitlab无法登录问题

在我第一次安装gitlab的时候发现登录页面是 正常的页面应该是 这种情况的主要原因是不是第一次登录,所以我们要找到原先的密码 解决方式: [rootgitlab ~]# vim /etc/gitlab/initial_root_password# WARNING: This value is valid only in the followin…