OpenAI 实战进阶教程 - 第六节: OpenAI 与爬虫集成实现任务自动化

news2025/2/6 16:21:22

爬虫与 OpenAI 模型结合,不仅能高效地抓取并分析海量数据,还能通过 NLP 技术生成洞察、摘要,极大提高业务效率。以下是一些实际工作中具有较高价值的应用案例:


1. 电商价格监控与智能分析

应用场景
电商企业需要监控竞争对手的商品价格策略与促销信息,以优化自己的销售策略。

操作思路

  1. 爬虫部分:抓取多个竞争对手网站的商品价格、库存信息以及促销描述。
  2. OpenAI 处理部分
    • 使用 GPT 模型对抓取的数据进行分析和摘要,生成「竞争对手价格变化报告」。
    • 预测可能的促销趋势,给出智能营销建议。

案例代码说明

import requests
from bs4 import BeautifulSoup
import openai

# 1. 爬取电商网站商品信息(示例URL替换)
url = "https://example.com/product-page"
response = requests.get(url)
soup = BeautifulSoup(response.text, "html.parser")

# 提取商品名称、价格、促销描述
product_name = soup.find("h1", class_="product-title").text
price = soup.find("span", class_="price").text
promo_info = soup.find("div", class_="promo-description").text

# 2. 调用 OpenAI 生成分析摘要
openai.api_key = "your-api-key"
prompt = f"""
Product Analysis Report:
Product: {product_name}
Price: {price}
Promotion: {promo_info}

Please provide a competitive analysis and suggest possible strategies.
"""

response = openai.ChatCompletion.create(
    model="gpt-3.5-turbo",
    messages=[{"role": "user", "content": prompt}]
)

print("Analysis Report:", response['choices'][0]['message']['content'])

输出示例

该商品的价格为 299 美元,当前促销为「买一送一」。建议通过限时优惠活动吸引用户,同时提供额外赠品以提高销量。


2. 舆情监测与自动摘要生成

应用场景
品牌需要实时关注社交媒体上的用户反馈与行业新闻,以维护品牌形象并优化产品策略。

操作思路

  1. 爬虫部分:抓取新闻网站或社交媒体上的评论、帖子和新闻内容。
  2. OpenAI 处理部分
    • 自动生成新闻摘要。
    • 使用情感分析识别负面反馈,并生成危机处理建议。

案例代码说明

import requests
from bs4 import BeautifulSoup
import openai

# 1. 爬取新闻网站内容
news_url = "https://example-news.com/latest-news"
response = requests.get(news_url)
soup = BeautifulSoup(response.text, "html.parser")

# 提取标题与正文
title = soup.find("h1").text
content = " ".join([p.text for p in soup.find_all("p")])

# 2. 调用 OpenAI 生成新闻摘要
openai.api_key = "your-api-key"
prompt = f"""
Title: {title}
Content: {content}

Please provide a concise summary and highlight key points.
"""

response = openai.ChatCompletion.create(
    model="gpt-3.5-turbo",
    messages=[{"role": "user", "content": prompt}]
)

print("News Summary:", response['choices'][0]['message']['content'])

输出示例

新闻标题:Tech Giant Releases New AI Tool
新闻摘要:该公司发布了一款新型人工智能工具,旨在提升用户体验。专家认为此举可能对市场产生重大影响。


3. 招聘信息智能分析

应用场景
数据分析团队希望从大量招聘信息中提取出岗位要求和技能趋势,并生成报告,为人才策略提供支持。

操作思路

  1. 爬虫部分:抓取招聘网站中岗位名称、薪资、技能要求等信息。
  2. OpenAI 处理部分
    • 提取技能关键词,并生成「热门技能趋势报告」。
    • 根据薪资与技能要求给出建议。

案例代码说明

import requests
from bs4 import BeautifulSoup
import openai

# 1. 爬取招聘网站信息
job_url = "https://example-job-board.com/jobs"
response = requests.get(job_url)
soup = BeautifulSoup(response.text, "html.parser")

# 提取职位信息
job_title = soup.find("h2", class_="job-title").text
salary = soup.find("span", class_="salary-range").text
skills = [li.text for li in soup.find_all("li", class_="required-skill")]

# 2. 调用 OpenAI 分析技能与趋势
openai.api_key = "your-api-key"
prompt = f"""
Job Title: {job_title}
Salary: {salary}
Skills Required: {", ".join(skills)}

Please analyze the skills trend and suggest career development advice.
"""

response = openai.ChatCompletion.create(
    model="gpt-3.5-turbo",
    messages=[{"role": "user", "content": prompt}]
)

print("Skills Trend Analysis:", response['choices'][0]['message']['content'])

输出示例

该职位要求的数据分析技能包括 Python、SQL 和数据可视化工具。建议持续关注 AI 与大数据分析技能的发展趋势。


小结

  • 爬虫与 OpenAI 的结合不仅能够抓取大量数据,还能对其进行智能化分析与生成,为业务优化提供支持。
  • 案例中展示了电商监控、舆情分析、招聘数据处理等实际应用场景,为不同业务需求提供了解决方案。

练习题

  1. 爬取一个在线新闻网站的内容,生成简要摘要并提取新闻的关键点。
  2. 选取一个招聘网站,爬取职位信息,并使用 OpenAI 生成技能趋势分析报告。
  3. 使用 OpenAI 对任意商品网站的数据生成营销策略建议。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2293866.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

51单片机07 串口通信

串口是一种应用十分广泛的通讯接口,串口成本低、容易使用、通信线路简单,可实现两个设备的互相通信。单片机的串口可以使单片机与单片机、单片机与电脑、单片机与各式各样的模块互相通信。51单片机内部自带UART(Universal Asynchronous Recei…

Java进阶——IO 流

文章目录 Java进阶——IO 流 1、File 类的使用 1.1、File 常用构造器1.2、路径分隔符1.3、File 的常用方法 2、IO流原理及流的分类 2.1、IO流原理2.2、流的分类 3、IO流的体系结构4、节点流 4.1、FileReader 读入数据的操作4.2、FileWriter 写出数据的操作4.3、FileReader 和 …

搭建集成开发环境PyCharm

1.下载安装Python(建议下载并安装3.9.x) https://www.python.org/downloads/windows/ 要注意勾选“Add Python 3.9 to PATH”复选框,表示将Python的路径增加到环境变量中 2.安装集成开发环境Pycharm http://www.jetbrains.com/pycharm/…

国防科大:双目标优化防止LLM灾难性遗忘

📖标题:How to Complete Domain Tuning while Keeping General Ability in LLM: Adaptive Layer-wise and Element-wise Regularization 🌐来源:arXiv, 2501.13669 🌟摘要 🔸大型语言模型(LLM…

NacosRce到docker逃逸实战

NacosRce到docker逃逸实战 1、Nacos Derby Rce打入内存马 这个漏洞的原理大家应该都知道&#xff0c; 2.3.2 < Nacos < 2.4.0版本默认derby接口未授权访问&#xff0c;攻击者可利用未授权访问执行SQL语句加载构造恶意的JAR包导致出现远程代码执行漏洞。 在日常的漏洞挖…

在Vue3 + Vite 项目中使用 Tailwind CSS 4.0

文章目录 首先是我的package.json根据官网步骤VS Code安装插件验证是否引入成功参考资料 首先是我的package.json {"name": "aplumweb","private": true,"version": "0.0.0","type": "module","s…

扣子平台的选择器节点:让智能体开发更简单,扣子免费系列教程(17)

欢迎来到涛涛聊AI。今天&#xff0c;我们来聊聊一个非常实用的工具——扣子平台的选择器节点。即使你不是计算机专业人员&#xff0c;但对计算机操作比较熟悉&#xff0c;这篇文章也能帮你快速上手。我们会从基础知识讲起&#xff0c;一步步带你了解选择器节点的使用方法和应用…

享元模式——C++实现

目录 1. 享元模式简介 2. 代码示例 1. 享元模式简介 享元模式是一种结构型模式。 享元模式用于缓存共享对象&#xff0c;降低内存消耗。共享对象相同的部分&#xff0c;避免创建大量相同的对象&#xff0c;减少内存占用。 享元模式需要将对象分成内部状态和外部状态两个部分…

SSRF 漏洞利用 Redis 实战全解析:原理、攻击与防范

目录 前言 SSRF 漏洞深度剖析 Redis&#xff1a;强大的内存数据库 Redis 产生漏洞的原因 SSRF 漏洞利用 Redis 实战步骤 准备环境 下载安装 Redis 配置漏洞环境 启动 Redis 攻击机远程连接 Redis 利用 Redis 写 Webshell 防范措施 前言 在网络安全领域&#xff0…

react的antd表格自定义图标

将原版的加号换成箭头 自定义图标 安装图标包&#xff1a; npm install --save ant-design/icons 引入&#xff1a; import { RightOutlined, DownOutlined } from ant-design/icons; 参数是一个函数 <Table columns{columns} dataSource{data} indentSize{20}expandIc…

Games104——游戏引擎Gameplay玩法系统:基础AI

这里写目录标题 寻路/导航系统NavigationWalkable AreaWaypoint NetworkGridNavigation Mesh&#xff08;寻路网格&#xff09;Sparse Voxel Octree Path FindingDijkstra Algorithm迪杰斯特拉算法A Star&#xff08;A*算法&#xff09; Path Smoothing Steering系统Crowd Simu…

亚博microros小车-原生ubuntu支持系列:22 物体识别追踪

背景知识 跟上一个颜色追踪类似。也是基于opencv的&#xff0c;不过背后的算法有很多 BOOSTING&#xff1a;算法原理类似于Haar cascades (AdaBoost)&#xff0c;是一种很老的算法。这个算法速度慢并且不是很准。MIL&#xff1a;比BOOSTING准一点。KCF&#xff1a;速度比BOOST…

java进阶之并发编程一ReentrantLock的实际应用和线程中断EXAMPLE

引言:继上一篇ReentrantLock的介绍来做俩个小demo。 实现3个线程分别打印指定数字和线程死锁进行线程中断。 上一篇:<<java进阶之并发编程一ReentrantLock同步锁的学习和syncthronized的区别>> **demo1:**ReentrantLock搭配三个线程分别打印指定的数字,直接上代…

分享2款 .NET 开源且强大的翻译工具

前言 对于程序员而言永远都无法逃避和英文打交道&#xff0c;今天大姚给大家分享2款 .NET 开源、功能强大的翻译工具&#xff0c;希望可以帮助到有需要的同学。 STranslate STranslate是一款由WPF开源的、免费的&#xff08;MIT License&#xff09;、即开即用、即用即走的翻…

SpringBoot+Dubbo+zookeeper 急速入门案例

项目目录结构&#xff1a; 第一步&#xff1a;创建一个SpringBoot项目&#xff0c;这里选择Maven项目或者Spring Initializer都可以&#xff0c;这里创建了一个Maven项目&#xff08;SpringBoot-Dubbo&#xff09;&#xff0c;pom.xml文件如下&#xff1a; <?xml versio…

[LeetCode] 二叉树 I — 深度优先遍历(前中后序遍历) | 广度优先遍历(层序遍历):递归法迭代法

二叉树 基础知识深度优先遍历递归法迭代法&#xff08;栈&#xff09;144# 二叉树的前序遍历94# 二叉树的中序遍历145# 二叉树的后序遍历 广度优先遍历递归法迭代法&#xff08;队列&#xff09;102# 二叉树的层序遍历107# 二叉树的层序遍历 II199# 二叉树的右视图637# 二叉树的…

Python aiortc API

本研究的主要目的是基于Python aiortc api实现抓取本地设备&#xff08;摄像机、麦克风&#xff09;媒体流实现Web端预览。本文章仅仅描述实现思路&#xff0c;索要源码请私信我。 demo-server解耦 原始代码解析 http服务器端 import argparse import asyncio import json…

OpenCV4,快速入门,第二讲:图像色彩空间转换

文章目录 引言一、色彩空间概述1.1 RGB与HSV的区别1.2 HSV的详细含义cvtColor二、cvtColor函数详解2.1 函数原型2.2 参数说明2.3 使用示例三、imwrite函数详解3.1 函数原型3.2 参数说明3.3 使用示例四、完整示例代码五、应用场景与注意事项5.1 HSV的典型应用5.2 注意事项结语引…

86.(2)攻防世界 WEB PHP2

之前做过&#xff0c;回顾一遍&#xff0c;详解见下面这篇博客 29.攻防世界PHP2-CSDN博客 既然是代码审计题目&#xff0c;打开后又不显示代码&#xff0c;肯定在文件里 <?php // 首先检查通过 GET 请求传递的名为 "id" 的参数值是否严格等于字符串 "admi…

RK3588——解决Linux系统触摸屏坐标方向相反问题

问题描述&#xff1a;触摸正常产生中断&#xff0c;但系统上报的触摸坐标不正确&#xff0c;是反向的坐标。 解决办法通过修改设备树添加属性翻转坐标。 注&#xff1a;需确认对应的驱动是否有解析该属性的具体内容&#xff0c;否则仍然无法生效。