【学习笔记】深度学习网络-正则化方法

news2025/2/6 2:48:23

作者选择了由 Ian Goodfellow、Yoshua Bengio 和 Aaron Courville 三位大佬撰写的《Deep Learning》(人工智能领域的经典教程,深度学习领域研究生必读教材),开始深度学习领域学习,深入全面的理解深度学习的理论知识。

在之前的文章中介绍了深度学习中用到的数学基础和强化学习的概念,本文将开始介绍现代深度学习中用于解决实际应用的实践。

【一文读懂】深度学习技术谱系:探索生成式AI的核心模型(一) 基础技术图谱

【生成式AI】理解深度学习和机器学习的数学基础:线性代数

【万字长文】理解深度学习和机器学习的数学基础:概率论和信息论

【学习笔记】理解深度学习和机器学习的数学基础:数值计算

【学习笔记】理解深度学习和机器学习的关系

【学习笔记】深度学习网络-深度前馈网络(MLP)

深度学习中的正则化方法:防止过拟合与提高泛化能力

一、引言

深度学习作为人工智能领域的重要分支,近年来取得了显著的发展。然而,随着模型复杂度的增加,过拟合问题也愈发突出。过拟合是指模型在训练数据上表现良好,但在未见数据上表现不佳的现象。正则化技术是解决这一问题的关键手段,通过限制模型复杂度,提高模型的泛化能力,从而在未知数据上表现出更好的性能。

二、正则化的概念与作用

正则化是深度学习中用于防止模型过拟合的重要技术。它通过向模型的损失函数添加额外的约束或惩罚项,使得学习过程更加稳定并提高模型的泛化能力。正则化的主要目的是通过控制模型复杂度,使模型能够更好地处理未知数据。

三、常见的正则化方法
1. L1和L2正则化
  • L1正则化:通过在损失函数中加入权重的绝对值和来约束模型复杂度。其目标函数为:

    min\left ( \frac{1}{2m}\sum_{i=1}^{m}(y_{i}-\hat{y}_{i})^{2} +\lambda \sum_{j=1}^{n}\left | w_{j} \right |\right )

    其中,\lambda 是正则化强度,w_{j}是第 j 个特征的权重。L1正则化能够将部分不重要的特征权重缩减为0,从而实现特征选择。

  • L2正则化:通过在损失函数中添加所有模型参数的平方和,来惩罚过大的权重。常见的形式是:

    L=L_{original}+\lambda \sum_{i}^{}w_{i}^{2}

    其中 L_{original} 是原始损失函数,w_{i}是模型的权重,\lambda是正则化强度的超参数。L2正则化倾向于将权重值压缩得比较小,减少模型的复杂度,从而提高泛化能力。

2. Dropout

Dropout是一种在训练过程中随机丢弃神经元的正则化方法,防止模型对特定神经元的过度依赖。具体来说,每次训练时,随机选择一部分神经元(通常是50%),将其输出设为0,从而迫使网络学习更加鲁棒的特征表示。Dropout通过减少神经元之间的共适应性,提高模型的泛化能力。

3. 数据增强

数据增强通过生成新的训练样本,增加训练数据的多样性,从而提高模型的泛化能力。常见的数据增强方法包括图像的旋转、平移、缩放、翻转等。数据增强特别适用于图像识别任务,可以显著提高模型的鲁棒性。

4. 早停

早停是一种通过监控验证集误差来防止过拟合的方法。具体来说,在训练过程中,当验证集误差开始上升时,停止训练。这样可以避免模型在训练数据上过度拟合,从而提高泛化能力。

5. Batch Normalization

Batch Normalization通过标准化每层的输入,减少内部协变量偏移,从而提高模型的训练速度和泛化能力。Batch Normalization在深度神经网络中广泛应用,可以显著提高模型的性能。

6. 权重衰减

权重衰减与L2正则化相似,通过在优化过程中引入权重的平方惩罚项来限制权重的大小,从而减少模型的复杂度。权重衰减能有效防止网络过拟合,尤其是在训练数据有限时。

7. 梯度惩罚

梯度惩罚是对神经网络的梯度大小进行正则化的技术,目的是约束网络的梯度不至于过大,避免过拟合。通过对梯度的惩罚,梯度惩罚能促使模型学习到更加平滑的决策边界,从而提高模型的泛化能力。

8. 特征选择和降维

特征选择通过选择对预测有用的特征来减少模型的输入维度,从而降低模型复杂度。降维技术如PCA也可以用于减少数据的维度,提高模型的可解释性和计算效率。

四、正则化方法的选择与应用

不同的正则化方法适用于不同的应用场景,具体选择哪种方法通常依赖于问题的类型、数据集的大小、模型的结构等因素。通过合理应用正则化方法,可以有效避免模型过拟合,提高其在未知数据上的表现。

  • L1和L2正则化:适用于线性模型和神经网络,特别是在回归问题中。

  • Dropout:适用于深度神经网络,特别是在图像识别和自然语言处理任务中。

  • 数据增强:适用于图像识别任务,可以显著提高模型的鲁棒性。

  • 早停:适用于各种深度学习任务,特别是在训练数据有限时。

  • Batch Normalization:适用于深度神经网络,可以显著提高训练速度和泛化能力。

  • 权重衰减:适用于各种深度学习任务,特别是在训练数据有限时。

  • 梯度惩罚:适用于对抗训练、生成对抗网络(GAN)和强化学习中。

  • 特征选择和降维:适用于高维数据集的处理,可以提高模型的可解释性和计算效率。

五、正则化方法的未来展望

随着深度学习技术的不断发展,新型正则化方法的研究将会越来越深入。未来,研究者将致力于探索更加高效、可解释的正则化方法。同时,神经网络正则化技术与其他学科的研究相结合,如生物学、物理学等,将有助于发现新的正则化方法,并提高深度学习模型的应用范围。

六、总结

正则化技术在深度学习中扮演着至关重要的角色,通过防止过拟合,提升模型的泛化能力。本文介绍了多种常见的正则化方法,包括L1和L2正则化、Dropout、数据增强、早停、Batch Normalization、权重衰减、梯度惩罚和特征选择等。这些方法通过不同的机制来限制模型的复杂度,从而提高模型在未知数据上的表现。在实际应用中,可以根据具体问题和数据集的特点选择合适的正则化技术和参数设置。

通过对正则化方法的深入理解和合理应用,可以显著提高深度学习模型的性能和泛化能力,为深度学习的发展提供新的动力。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2293554.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

介绍一下Mybatis的底层原理(包括一二级缓存)

表面上我们的就是Sql语句和我们的java对象进行映射,然后Mapper代理然后调用方法来操作数据库 底层的话我们就涉及到Sqlsession和Configuration 首先说一下SqlSession, 它可以被视为与数据库交互的一个会话,用于执行 SQL 语句(Ex…

WordPress使用(1)

1. 概述 WordPress是一个开源博客框架,配合不同主题,可以有多种展现方式,博客、企业官网、CMS系统等,都可以很好的实现。 官网:博客工具、发布平台和内容管理系统 – WordPress.org China 简体中文,这里可…

BUUCTF_[安洵杯 2019]easy_web(preg_match绕过/MD5强碰撞绕过/代码审计)

打开靶场,出现下面的静态html页面,也没有找到什么有价值的信息。 查看页面源代码 在url里发现了img传参还有cmd 求img参数 这里先从img传参入手,这里我发现img传参好像是base64的样子 进行解码,解码之后还像是base64的样子再次进…

C基础寒假练习(4)

输入带空格的字符串&#xff0c;求单词个数、 #include <stdio.h> // 计算字符串长度的函数 size_t my_strlen(const char *str) {size_t len 0;while (str[len] ! \0) {len;}return len; }int main() {char str[100];printf("请输入一个字符串: ");fgets(…

MySQL 事务实现原理( 详解 )

MySQL 主要是通过: 锁、Redo Log、Undo Log、MVCC来实现事务 事务的隔离性利用锁机制实现 原子性、一致性和持久性由事务的 redo 日志和undo 日志来保证。 Redo Log(重做日志)&#xff1a;记录事务对数据库的所有修改&#xff0c;在崩溃时恢复未提交的更改&#xff0c;保证事务…

git基础使用--1--版本控制的基本概念

文章目录 git基础使用--1--版本控制的基本概念1.版本控制的需求背景&#xff0c;即为啥需要版本控制2. 集中式版本控制SVN3. 分布式版本控制 Git4. SVN和Git的比较 git基础使用–1–版本控制的基本概念 1.版本控制的需求背景&#xff0c;即为啥需要版本控制 先说啥叫版本&…

Unity飞行代码 超仿真 保姆级教程

本文使用Rigidbody控制飞机&#xff0c;基本不会穿模。 效果 飞行效果 这是一条优雅的广告 如果你也在开发飞机大战等类型的飞行游戏&#xff0c;欢迎在主页搜索博文并参考。 搜索词&#xff1a;Unity游戏(Assault空对地打击)开发。 脚本编写 首先是完整代码。 using System.Co…

力扣73矩阵置零

给定一个 m x n 的矩阵&#xff0c;如果一个元素为 0 &#xff0c;则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。 输入&#xff1a;matrix [[1,1,1],[1,0,1],[1,1,1]] 输出&#xff1a;[[1,0,1],[0,0,0],[1,0,1]] 输入&#xff1a;matrix [[0,1,2,0],[3,4,5,2],[…

登录认证(5):过滤器:Filter

统一拦截 上文我们提到&#xff08;登录认证&#xff08;4&#xff09;&#xff1a;令牌技术&#xff09;&#xff0c;现在大部分项目都使用JWT令牌来进行会话跟踪&#xff0c;来完成登录功能。有了JWT令牌可以标识用户的登录状态&#xff0c;但是完整的登录逻辑如图所示&…

python算法和数据结构刷题[1]:数组、矩阵、字符串

一画图二伪代码三写代码 LeetCode必刷100题&#xff1a;一份来自面试官的算法地图&#xff08;题解持续更新中&#xff09;-CSDN博客 算法通关手册&#xff08;LeetCode&#xff09; | 算法通关手册&#xff08;LeetCode&#xff09; (itcharge.cn) 面试经典 150 题 - 学习计…

详解u3d之AssetBundle

一.AssetBundle的概念 “AssetBundle”可以指两种不同但相关的东西。 1.1 AssetBundle指的是u3d在磁盘上生成的存放资源的目录 目录包含两种类型文件(下文简称AB包)&#xff1a; 一个序列化文件&#xff0c;其中包含分解为各个对象并写入此单个文件的资源。资源文件&#x…

接口测试通用测试用例

接口测试主要用于检测外部系统与系统之间以及内部各个子系统之间的交互点。 测试的重点是检查数据的交换&#xff0c;传递和控制管理过程&#xff0c;以及系统间的相互逻辑依赖关系等。 现在很多系统前后端架构是分离的&#xff0c;从安全层面来说&#xff0c;只依赖前段进行限…

【BUUCTF杂项题】荷兰宽带数据泄露、九连环

一.荷兰宽带数据泄露 打开发现是一个.bin为后缀的二进制文件&#xff0c;因为提示宽带数据泄露&#xff0c;考虑是宽带路由器方向的隐写 补充&#xff1a;大多数现代路由器都可以让您备份一个文件路由器的配置文件&#xff0c;软件RouterPassView可以读取这个路由配置文件。 用…

蓝桥杯思维训练营(三)

文章目录 题目详解680.验证回文串 II30.魔塔游戏徒步旅行中的补给问题观光景点组合得分问题 题目详解 680.验证回文串 II 680.验证回文串 II 思路分析&#xff1a;这个题目的关键就是&#xff0c;按照正常来判断对应位置是否相等&#xff0c;如果不相等&#xff0c;那么就判…

基于RTOS的STM32游戏机

1.游戏机的主要功能 所有游戏都来着B站JL单片机博主开源 这款游戏机具备存档与继续游戏功能&#xff0c;允许玩家在任何时候退出当前游戏并保存进度&#xff0c;以便日后随时并继续之前的冒险。不仅如此&#xff0c;游戏机还支持多任务处理&#xff0c;玩家可以在退出当前游戏…

计算机网络——三种交换技术

目录 电路交换——用于电话网络 电路交换的优点&#xff1a; 电路交换的缺点&#xff1a; 报文交换——用于电报网络 报文交换的优点&#xff1a; 报文交换的缺点&#xff1a; 分组交换——用于现代计算机网络 分组交换的优点&#xff1a; 分组交换的缺点 电路交换——…

HTML5教程之标签(2)

HTML5 <b> 标签 实例 在HTML5中&#xff0c;你可以使用<b>标签来对某些文本实现加粗的效果&#xff0c;请参考下述的示例&#xff1a; <p>这是一个普通的文本- <b>这是一个加粗文本</b>。</p> 尝试一下 浏览器支持 所有主流浏览器都支…

Verilog基础(一):基础元素

verilog基础 我先说,看了肯定会忘,但是重要的是这个过程,我们知道了概念,知道了以后在哪里查询。语法都是术,通用的概念是术。所以如果你有相关的软件编程经验,那么其实开启这个学习之旅,你会感受到熟悉,也会感受到别致。 入门 - 如何开始 欢迎来到二进制的世界,数字…

Vue 图片引用方式详解:静态资源与动态路径访问

目录 前言1. 引用 public/ 目录2. assets/ 目录3. 远程服务器4. Vue Router 动态访问5. 总结6. 扩展&#xff08;图片不显示&#xff09; 前言 &#x1f91f; 找工作&#xff0c;来万码优才&#xff1a;&#x1f449; #小程序://万码优才/r6rqmzDaXpYkJZF 在 Vue 开发中&#x…

Qt网络相关

“ 所有生而孤独的人&#xff0c;葆有的天真 ” 为了⽀持跨平台, QT对⽹络编程的 API 也进⾏了重新封装。本章会上手一套基于QT的网络通信编写。 UDP Socket 在使用Qt进行网络编程前&#xff0c;需要在Qt项目中的.pro文件里添加对应的网络模块( network ). QT core gui net…