并行计算、分布式计算与云计算:概念剖析与对比研究(表格对比)

news2025/2/5 19:33:30

什么是并行计算?什么是分布计算?什么是云计算?我们如何更好理解这3个概念,我们采用概念之间的区别和联系的方式来理解,做到切实理解,深刻体会。

1、并行计算与分布式计算

并行计算、分布式计算都属于高性能计算范畴,这也使得很多人一直分不清两者之间的关系。

并行计算是相对于串行计算来说的,并行计算主要目的是加速求解问题的速度和提高求解问题的规模。并行计算强调时效性和海量数据处理,各任务之间的独立性弱,而且关系密切,每个节点之间的任务时间要同步。即并行程序并行处理的任务包之间有很大的联系,并且并行计算的每一个任务块都是必要的,没有浪费的、分割的,就是每个任务包都要处理,而且计算结果相互影响,这就要求每个计算结果要绝对正确

☀所以,并不是所有的数据或者任务都使用并行计算。

分布式计算是相对于集中式计算来说的。分布式计算的任务包相互之间有独立性,上一个任务包的结果未返回或者是结果处理错误,对下一个任务包的处理几乎没有什么影响。分布式计算的实时性要求不高,并且允许存在计算错误。

分布式计算中,有大量的无用数据块。因此,分布式计算的速度尽管很快,但真正的“效率”是低之又低的。分布式要处理的问题一般是基于“寻找”模式的。所谓的“寻找”,就相当于穷举法。而并行计算的任务包个数相对有限,在一个有限的时间应该是可能完成的。

分布式计算程序的编写一般用是C++或Java,基本不用MPI接口。并行计算编程采用用MPI或者OpenMP。

☀那么,并行计算和分布计算的区别和联系是什么呢?通过如下表格,我们直观显示。

联系方面

并行计算

分布式计算

共同点

目标

提高计算效率,通过多核或多处理器同时执行任务,解决复杂计算问题。

提高计算效率,通过多台计算机协同工作,处理大规模数据或复杂任务。

都旨在通过并行执行任务来提高计算效率,解决复杂问题。

资源共享

利用同一台机器上的多个处理器核心、内存等资源。

利用分布在不同地理位置的多台计算机的资源。

都依赖多个计算资源来完成任务,需要合理分配和管理资源。

任务分解

将任务分解为多个线程或进程,在同一台机器上并行执行。

将任务分解为多个子任务,分配到不同机器上执行。

都需要将复杂任务分解为多个子任务,并在多个计算单元上并行执行。

通信机制

通信发生在同一台机器的多个处理器或核心之间,通常通过共享内存或消息传递接口(MPI)。

通信发生在不同机器之间,通过网络进行。

都需要高效的通信机制来协调任务执行,减少通信开销。

容错机制

处理线程或进程的异常情况,通常依赖硬件的可靠性。

处理网络问题或机器故障,通过数据冗余、任务重试等方式保证任务完成。

都需要考虑容错机制,以确保系统的可靠性和稳定性。

应用场景

适用于单机多核环境,如高性能计算、科学模拟等。

适用于大规模集群环境,如大数据处理、云计算等。

许多场景(如机器学习、数据分析)既可以使用并行计算,也可以使用分布式计算。

2、并行计算与云计算

云计算是并行计算技术、大数据技术和网络技术发展的必然结果。

云计算需要解决:计算资源的透明虚拟化和弹性化、内存储资源的透明虚拟化和弹性化、外存储资源的透明虚拟化和弹性化、数据安全的保障、向开发者提供完善的API并实现终端用户向云计算的平滑过渡。云计算使普通用户有了享受高性能计算的机会,因为云计算中心几乎可以提供无限制的计算能力,计算的弹性化和存储的弹性化是云计算的重要特征

云计算的计算能力实现是从计算机的并行化开始的,即把多个计算机并联起来,从而获得更快的计算速度。大规模并行计算机出现后,以其为基础的云计算服务器集群的服务器数量是以万、十万甚至更高的单位计数,在这样巨大的集群规模下,云计算面临两个重要问题:昂贵的系统部署费用和不可忽视的结点失效问题。

由于服务器的大量集中,服务器的失效成为经常的事情,传统的架构对于单点失效是很敏感的,而在云计算架构下,任何的单点失效都不会影响系统对外提供服务。即云计算在构建系统架构时就将系统结点的失效考虑了进去,实现了基于不可信服务器结点的云计算基础架构。将服务器失效作为云计算系统的服务器集群模型是符合实际情况的,这种情况下单个服务器可以看作是不可信的结点。在将服务器失效作为常态的服务器集群模型下,数据的安全性通过副本策略得到了保证。

☀那么,并行计算和云计算的区别和联系是什么呢?通过如下表格,我们直观显示。

方面

并行计算

云计算

定义

利用多个处理器或计算节点同时执行任务,以提高计算效率。

基于互联网的计算模式,通过虚拟化技术将计算资源以服务形式提供给用户。

架构

多处理器架构或分布式集群,任务分解后在多个计算单元上并行执行。

分布式架构,通过虚拟化技术整合大量计算资源,提供弹性服务。

资源管理

需要高效的任务分配和同步机制,确保计算资源(硬件资源)充分利用。

资源动态分配和弹性伸缩,根据用户需求自动调整。

容错性

对单点故障较为敏感,需通过冗余设计提高可靠性。

内置容错机制,单点失效不影响整体服务。

应用场景

科学计算(如气候模拟、分子动力学)、大数据分析、人工智能模型训练。

提供基础设施即服务(IaaS)、平台即服务(PaaS)、软件即服务(SaaS),支持各类应用。

联系

并行计算是云计算的基础技术之一,云计算通过并行计算实现大规模任务的高效处理。

云计算为并行计算提供了弹性资源和虚拟化环境,降低了并行计算的部署成本。

区别

关注计算任务的并行执行和性能优化。

关注资源的虚拟化、弹性伸缩和按需服务。

到此,并行计算、分布计算和云计算的概念已分析完成,想必已经回答了什么是并行计算?什么是分布计算?什么是云计算的概念。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2293446.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Linux系统】信号:再谈OS与内核区、信号捕捉、重入函数与 volatile

再谈操作系统与内核区 1、浅谈虚拟机和操作系统映射于地址空间的作用 我们调用任何函数(无论是库函数还是系统调用),都是在各自进程的地址空间中执行的。无论操作系统如何切换进程,它都能确保访问同一个操作系统实例。换句话说&am…

自定义数据集 使用paddlepaddle框架实现逻辑回归

导入必要的库 import numpy as np import paddle import paddle.nn as nn 数据准备: seed1 paddle.seed(seed)# 1.散点输入 定义输入数据 data [[-0.5, 7.7], [1.8, 98.5], [0.9, 57.8], [0.4, 39.2], [-1.4, -15.7], [-1.4, -37.3], [-1.8, -49.1], [1.5, 75.6…

LabVIEW图片识别逆向建模系统

本文介绍了一个基于LabVIEW的图片识别逆向建模系统的开发过程。系统利用LabVIEW的强大视觉处理功能,通过二维图片快速生成对应的三维模型,不仅降低了逆向建模的技术门槛,还大幅提升了建模效率。 ​ 项目背景 在传统的逆向建模过程中&#xf…

MySQL(高级特性篇) 13 章——事务基础知识

一、数据库事务概述 事务是数据库区别于文件系统的重要特性之一 (1)存储引擎支持情况 SHOW ENGINES命令来查看当前MySQL支持的存储引擎都有哪些,以及这些存储引擎是否支持事务能看出在MySQL中,只有InnoDB是支持事务的 &#x…

前端进阶:深度剖析预解析机制

一、预解析是什么? 在前端开发中,我们常常会遇到一些看似不符合常规逻辑的代码执行现象,比如为什么在变量声明之前访问它,得到的结果是undefined,而不是报错?为什么函数在声明之前就可以被调用&#xff1f…

【力扣】53.最大子数组和

AC截图 题目 思路 这道题主要考虑的就是要排除负数带来的负面影响。如果遍历数组,那么应该有如下关系式: currentAns max(prenums[i],nums[i]) pre是之前记录的最大和,如果prenums[i]小于nums[i],就要考虑舍弃pre,从…

基于Spring Security 6的OAuth2 系列之七 - 授权服务器--自定义数据库客户端信息

之所以想写这一系列,是因为之前工作过程中使用Spring Security OAuth2搭建了网关和授权服务器,但当时基于spring-boot 2.3.x,其默认的Spring Security是5.3.x。之后新项目升级到了spring-boot 3.3.0,结果一看Spring Security也升级…

vim-plug的自动安装与基本使用介绍

vim-plug介绍 Vim-plug 是一个轻量级的 Vim 插件管理器,它允许你轻松地管理 Vim 插件的安装、更新和卸载。相较于其他插件管理器,vim-plug 的优点是简单易用,速度较快,而且支持懒加载插件(即按需加载) 自动…

Deep Crossing:深度交叉网络在推荐系统中的应用

实验和完整代码 完整代码实现和jupyter运行:https://github.com/Myolive-Lin/RecSys--deep-learning-recommendation-system/tree/main 引言 在机器学习和深度学习领域,特征工程一直是一个关键步骤,尤其是对于大规模的推荐系统和广告点击率预…

想品客老师的第十天:类

类是一个优化js面向对象的工具 类的声明 //1、class User{}console.log(typeof User)//function//2、let Hdclass{}//其实跟1差不多class Stu{show(){}//注意这里不用加逗号,对象才加逗号get(){console.log(后盾人)}}let hdnew Stu()hd.get()//后盾人 类的原理 类…

MyBatis-Plus速成指南:条件构造器和常用接口

Wrapper 介绍 Wrapper:条件构造抽象类,最顶端父类 AbstractWrapper:用于查询条件封装,生成 SQL 的 where 条件QueryWrapper:查询条件封装UpdateWrapper:Update 条件封装AbstractLambdaWrapper:使…

(脚本学习)BUU18 [CISCN2019 华北赛区 Day2 Web1]Hack World1

自用 题目 考虑是不是布尔盲注,如何测试:用"1^1^11 1^0^10,就像是真真真等于真,真假真等于假"这个测试 SQL布尔盲注脚本1 import requestsurl "http://8e4a9bf2-c055-4680-91fd-5b969ebc209e.node5.buuoj.cn…

【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】2.25 多线程并行:GIL绕过与真正并发

2.25 多线程并行:GIL绕过与真正并发 目录 #mermaid-svg-JO4lsTIyjOweVkos {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-JO4lsTIyjOweVkos .error-icon{fill:#552222;}#mermaid-svg-JO4lsTIyjOweVkos …

Java 大视界 -- Java 大数据在智能医疗影像诊断中的应用(72)

💖亲爱的朋友们,热烈欢迎来到 青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而 我的博客 正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!💖 一、…

【Leetcode刷题记录】1456. 定长子串中元音的最大数目---定长滑动窗口即解题思路总结

1456. 定长子串中元音的最大数目 给你字符串 s 和整数 k 。请返回字符串 s 中长度为 k 的单个子字符串中可能包含的最大元音字母数。 英文中的 元音字母 为(a, e, i, o, u)。 这道题的暴力求解的思路是通过遍历字符串 s 的每一个长度为 k 的子串&#xf…

upload-labs安装与配置

前言 作者进行upload-labs靶场练习时,在环境上出了很多问题,吃了很多苦头,甚至改了很多配置也没有成功。 upload-labs很多操作都是旧时代的产物了,配置普遍都比较老,比如PHP版本用5.2.17(还有中间件等&am…

从Transformer到世界模型:AGI核心架构演进

文章目录 引言:架构革命推动AGI进化一、Transformer:重新定义序列建模1.1 注意力机制的革命性突破1.2 从NLP到跨模态演进1.3 规模扩展的黄金定律二、通向世界模型的关键跃迁2.1 从语言模型到认知架构2.2 世界模型的核心特征2.3 混合架构的突破三、构建世界模型的技术路径3.1 …

每日一博 - 三高系统架构设计:高性能、高并发、高可用性解析

文章目录 引言一、高性能篇1.1 高性能的核心意义1.2 影响系统性能的因素1.3 高性能优化方法论1.3.1 读优化:缓存与数据库的结合1.3.2 写优化:异步化处理 1.4 高性能优化实践1.4.1 本地缓存 vs 分布式缓存1.4.2 数据库优化 二、高并发篇2.1 高并发的核心意…

【工欲善其事】利用 DeepSeek 实现复杂 Git 操作:从原项目剥离出子版本树并同步到新的代码库中

文章目录 利用 DeepSeek 实现复杂 Git 操作1 背景介绍2 需求描述3 思路分析4 实现过程4.1 第一次需求确认4.2 第二次需求确认4.3 第三次需求确认4.4 V3 模型:中间结果的处理4.5 方案验证,首战告捷 5 总结复盘 利用 DeepSeek 实现复杂 Git 操作 1 背景介绍…

【C++】线程池实现

目录 一、线程池简介线程池的核心组件实现步骤 二、C11实现线程池源码 三、线程池源码解析1. 成员变量2. 构造函数2.1 线程初始化2.2 工作线程逻辑 3. 任务提交(enqueue方法)3.1 方法签名3.2 任务封装3.3 任务入队 4. 析构函数4.1 停机控制 5. 关键技术点解析5.1 完美转发实现5…