OpenAI推出Deep Research带给我们怎样的启示

news2025/2/5 4:00:07

OpenAI 又发新产品了,这次是面向深度研究领域的智能体产品 ——「Deep Research」,貌似被逼无奈的节奏…

 

在技术方面,Deep Research搭载了优化后o3模型并通过端到端强化学习在多个领域的复杂浏览和推理任务上进行了训练。因没有更多的技术暴露,看起来这一技术实现了输入到输出跨train-influence的整体优化,而不仅仅是分阶段或局部的求解和优化。通过强化学习,其能够规划并执行多步骤的研究任务,使其在处理复杂任务时表现出色,尤其是在需要动态调整策略的场景中。

在Agent协同方面,Deep Research由多个模块组成,包括信息发现、信息综合和推理等模块,这种多模块协同工作的方式,使得Deep Research能够像人类分析师一样逐步分解任务并在互联网上进行多轮的信息搜索与验证,这与之前开放的大多数Agent模式相差无几。

在长时间深度思考方面,我想这也是必然的,与传统模型追求快速响应不同,Deep Research支持5到30分钟甚至更长时间来处理问题,使其能够深入挖掘网络信息,生成更全面、深入的研究成果,这也进一步在体现了模型间的这种慢思考test-time compute interactive。

在实验中,Deep Research表现出了其在处理动态变化的信息时出色表现。在“人类终极考试”中,其准确率达到了26.6%,大幅领先其他“模型”。

同时,在对o3处理文本、图像和PDF等多种格式的数据且在跨领域信息整合方面的优化方面、对输出的引用溯源及对其思考过程的总结等方面做出了一些工作。

尽管Deep Research在多个基准测试中表现出色,但其在某些模糊性查询或辨别中仍可能出现信息不准确的情况,我想这也需在使用时需保持一定的谨慎并具备一定的领域专业知识。

不过,通过这次Deep Research的发布,除了在Research-time上令人惊艳的表现外,我想这背后的深度技术布局更应该给我们一些启示:

① 如前文提到的基于o3模型建立的端到端强化学习训练范式下对于Agent而非仅模型构建的进化飞轮;

② 未来Research+Operator双界面的贯穿融合,甚至再造或联合类Cursor/Devin的多界面深度融合…

我想这两个给到我们的启示每一个都应去进一步深度探究和求索,有时间再整理好思路跟大家分享讨论~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2292104.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

K8S学习笔记-------1.安装部署K8S集群环境

1.修改为root权限 #sudo su 2.修改主机名 #hostnamectl set-hostname k8s-master01 3.查看网络地址 sudo nano /etc/netplan/01-netcfg.yaml4.使网络配置修改生效 sudo netplan apply5.修改UUID(某些虚拟机系统,需要设置才能生成UUID)#…

【基于SprintBoot+Mybatis+Mysql】电脑商城项目之用户登录

🧸安清h:个人主页 🎥个人专栏:【Spring篇】【计算机网络】【Mybatis篇】 🚦作者简介:一个有趣爱睡觉的intp,期待和更多人分享自己所学知识的真诚大学生。 目录 🎯1.登录-持久层 &…

【Deep Seek本地化部署】模型实测:规划求解python代码

目录 前言 一、实测 1、整数规划问题 2、非线性规划问题 二、代码正确性验证 1、整数规划问题代码验证 2、非线性规划问题代码验证 三、结果正确性验证 1、整数规划问题结果正确性验证 2、非线性规划问题正确性验证 四、整数规划问题示例 后记 前言 模型&#xff…

【游戏设计原理】98 - 时间膨胀

从上文中,我们可以得到以下几个启示: 游戏设计的核心目标是让玩家感到“时间飞逝” 游戏的成功与否,往往取决于玩家的沉浸感。如果玩家能够完全投入游戏并感受到时间飞逝,说明游戏设计在玩法、挑战、叙事等方面达到了吸引人的平衡…

C语言基础系列【1】第一个C程序:Hello, World!

C语言的历史与特点 历史背景 C语言起源于20世纪70年代,最初是由美国贝尔实验室的Dennis Ritchie和Ken Thompson为了开发UNIX操作系统而设计的一种编程语言。在UNIX系统的开发过程中,他们发现原有的B语言(由Thompson设计)在功能和…

【LLM】DeepSeek-R1-Distill-Qwen-7B部署和open webui

note DeepSeek-R1-Distill-Qwen-7B 的测试效果很惊艳,CoT 过程可圈可点,25 年应该值得探索更多端侧的硬件机会。 文章目录 note一、下载 Ollama二、下载 Docker三、下载模型四、部署 open webui 一、下载 Ollama 访问 Ollama 的官方网站 https://ollam…

go-zero学习笔记(三)

利用goctl生成rpc服务 编写proto文件 // 声明 proto 使用的语法版本 syntax "proto3";// proto 包名 package demoRpc;// golang 包名(可选) option go_package "./demo";// 如需为 .proto 文件添加注释,请使用 C/C 样式的 // 和 /* ... */…

C# 修改项目类型 应用程序程序改类库

初级代码游戏的专栏介绍与文章目录-CSDN博客 我的github:codetoys,所有代码都将会位于ctfc库中。已经放入库中我会指出在库中的位置。 这些代码大部分以Linux为目标但部分代码是纯C的,可以在任何平台上使用。 源码指引:github源…

地址查询API接口:高效查询地址信息,提升数据处理效率

地址查询各省市区API接口 地址查询是我们日常生活中经常遇到的一个需求,无论是在物流配送、地图导航还是社交网络等应用中,都需要通过地址来获取地理位置信息。为了满足这个需求,我们可以使用地址查询API接口来高效查询地址信息,提…

图 、图的存储

图的基本概念: 图g由顶点集v和边集e组成,记为g(v,e) 用|v|表示图g中顶点的个数,也称图g的阶,用|e|表示图g中边的条数 线性表可以是空表,树可以是空树,但图不可以是空&…

【数据结构】(4) 线性表 List

一、什么是线性表 线性表就是 n 个相同类型元素的有限序列,每一个元素只有一个前驱和后继(除了第一个和最后一个元素)。 数据结构中,常见的线性表有:顺序表、链表、栈、队列。 二、什么是 List List 是 Java 中的线性…

YOLO11/ultralytics:环境搭建

前言 人工智能物体识别行业应该已经饱和了吧?或许现在并不是一个好的入行时候。 最近看到了各种各样相关的扩展应用,为了理解它,我不得不去尝试了解一下。 我选择了git里非常受欢迎的yolo系列,并尝试了最新版本YOLO11或者叫它ultr…

Spring Boot 2 快速教程:WebFlux优缺点及性能分析(四)

WebFlux优缺点 【来源DeepSeek】 Spring WebFlux 是 Spring 框架提供的响应式编程模型,旨在支持非阻塞、异步和高并发的应用场景。其优缺点如下: 优点 高并发与低资源消耗 非阻塞 I/O:基于事件循环模型(如 Netty)&am…

《OpenCV》——图像透视转换

图像透视转换简介 在 OpenCV 里,图像透视转换属于重要的几何变换,也被叫做投影变换。下面从原理、实现步骤、相关函数和应用场景几个方面为你详细介绍。 原理 实现步骤 选取对应点:要在源图像和目标图像上分别找出至少四个对应的点。这些对…

20250202在Ubuntu22.04下使用Guvcview录像的时候降噪

20250202在Ubuntu22.04下使用Guvcview录像的时候降噪 2025/2/2 21:25 声卡:笔记本电脑的摄像头自带的【USB接口的】麦克风。没有外接3.5mm接口的耳机。 缘起:在安装Ubuntu18.04/20.04系统的笔记本电脑中直接使用Guvcview录像的时候底噪很大! …

The Simulation技术浅析(四):随机数生成

随机数生成技术 是 The Simulation 中的核心组成部分,广泛应用于蒙特卡洛模拟、密码学、统计建模等领域。随机数生成技术主要分为 伪随机数生成器(PRNG,Pseudo-Random Number Generator) 和 真随机数生成器(TRNG,True Random Number Generator)。 1. 伪随机数生成器(PR…

结构体DMA串口接收比特错位

发送: 显示: uint16_t接收时候会比特错位。

如何在Intellij IDEA中识别一个文件夹下的多个Maven module?

目录 问题描述 理想情况 手动添加Module,配置Intellij IDEA的Project Structure 问题描述 一个文件夹下有多个Maven项目,一个一个开窗口打开可行但是太麻烦。直接open整个文件夹会发现Intellij IDEA默认可能就识别一个或者几个Maven项目,如…

基于UKF-IMM无迹卡尔曼滤波与交互式多模型的轨迹跟踪算法matlab仿真,对比EKF-IMM和UKF

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述 基于UKF-IMM无迹卡尔曼滤波与交互式多模型的轨迹跟踪算法matlab仿真,对比EKF-IMM和UKF。 2.测试软件版本以及运行结果展示 MATLAB2022A版本运行 3.核心程序 .…

YOLOV11-1:YoloV11-安装和CLI方式训练模型

YoloV11-安装和CLI方式训练模型 1.安装和运行1.1安装的基础环境1.2安装yolo相关组件1.3命令行方式使用1.3.1 训练1.3.2 预测 本文介绍yoloV11的安装和命令行接口 1.安装和运行 1.1安装的基础环境 GPU环境,其中CUDA是12.4版本 1.2安装yolo相关组件 # 克隆github…