基于UKF-IMM无迹卡尔曼滤波与交互式多模型的轨迹跟踪算法matlab仿真,对比EKF-IMM和UKF

news2025/3/13 16:37:53

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

5.完整程序


1.程序功能描述

基于UKF-IMM无迹卡尔曼滤波与交互式多模型的轨迹跟踪算法matlab仿真,对比EKF-IMM和UKF。

2.测试软件版本以及运行结果展示

MATLAB2022A版本运行

3.核心程序

.............................................................................
% 绘制目标运动与传感器分布的图形,展示 IMM - UKF 算法的跟踪效果
%目标运动与传感器分布
figure   
% 绘制目标的真实轨迹
plot(TargetState(1,:),TargetState(4,:),'k','LineWidth',2);
hold on
% 循环处理每个节点
for i = 1:NumberNode
    % 绘制 IMM - UKF 算法的状态估计轨迹
    plot(Xfstate(1,:),Xfstate(4,:),'-mo',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.5,0.9,0.0]);
    hold on
    % 绘制真实节点的位置
    plot(NodeDistribution(1,i),NodeDistribution(2,i),'bo','LineWidth',1);
    hold on
    % 在节点位置旁边标注节点编号
    text(NodeDistribution(1,i)+0.5,NodeDistribution(2,i)+0.5,num2str(i));
    hold on
    % 绘制 IMM - UKF 算法估计的节点位置
    plot(pest(1,i),pest(2,i),'rs','LineWidth',1);
    hold on
    % 添加图例说明不同线条和标记的含义
    legend('真实轨迹','IMM-UKF估计轨迹','真实节点','IMM-UKF节点');
    % 设置图形标题
    title('跟踪效果对比');
end
% 设置坐标轴为正方形,使图形比例合适
axis square

% 绘制目标运动与传感器分布的图形,展示 IMM - EKF 算法的跟踪效果
figure   
% 绘制目标的真实轨迹
plot(TargetState(1,:),TargetState(4,:),'k','LineWidth',2);
hold on
% 循环处理每个节点
for i = 1:NumberNode
    % 绘制 IMM - EKF 算法的状态估计轨迹
    plot(Xfstate2(1,:),Xfstate2(4,:),'-mo',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.5,0.9,0.0]);
    hold on
    % 绘制真实节点的位置
    plot(NodeDistribution(1,i),NodeDistribution(2,i),'bo','LineWidth',1);
    hold on
    % 在节点位置旁边标注节点编号
    text(NodeDistribution(1,i)+0.5,NodeDistribution(2,i)+0.5,num2str(i));
    hold on
    % 绘制 IMM - EKF 算法估计的节点位置
    plot(pest2(1,i),pest2(2,i),'rs','LineWidth',1);
    hold on
    % 添加图例说明不同线条和标记的含义
    legend('真实轨迹','IMM-EKF估计轨迹','真实节点','IMM-EKF节点');
    % 设置图形标题
    title('跟踪效果对比');
end
% 设置坐标轴为正方形,使图形比例合适
axis square

% 绘制目标运动与传感器分布的图形,展示 UKF 算法的跟踪效果
figure   
% 绘制目标的真实轨迹
plot(TargetState(1,:),TargetState(4,:),'k','LineWidth',2);
hold on
% 循环处理每个节点
for i = 1:NumberNode
    % 绘制 UKF 算法的状态估计轨迹
    plot(Para_sensor3(1,:),Para_sensor3(4,:),'-mo',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.5,0.9,0.0]);
    hold on
    % 绘制真实节点的位置
    plot(NodeDistribution(1,i),NodeDistribution(2,i),'bo','LineWidth',1);
    hold on
    % 在节点位置旁边标注节点编号
    text(NodeDistribution(1,i)+0.5,NodeDistribution(2,i)+0.5,num2str(i));
    hold on
    % 绘制 UKF 算法估计的节点位置
    plot(pest3(1,i),pest3(2,i),'rs','LineWidth',1);
    hold on
    % 添加图例说明不同线条和标记的含义
    legend('真实轨迹','UKF估计轨迹','真实节点','UKF节点');
    % 设置图形标题
    title('跟踪效果对比');
end
% 设置坐标轴为正方形,使图形比例合适
axis square

% 绘制不同算法的误差随时间变化的曲线
figure
% 绘制 IMM - UKF 算法的误差曲线
plot(tms,err1(1,:),'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on;
% 绘制 IMM - EKF 算法的误差曲线
plot(tms,err2(1,:),'-mo',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.5,0.9,0.0]);
hold on;
% 绘制 UKF 算法的误差曲线
plot(tms,err3(1,:),'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
hold on;
% 添加图例,说明不同曲线对应的算法
legend('IMM - UKF ','IMM - EKF','UKF');
% 设置 x 轴标签为时间步
xlabel('Time Steps')
% 设置 y 轴标签为误差
ylabel('error')

% 绘制不同算法的平均误差柱状图
figure
% 绘制三个算法的平均误差柱状图
bar([mean(err1(1,:)),mean(err2(1,:)),mean(err3(1,:))]);
% 设置 x 轴标签,说明每个柱子对应的算法
xlabel(['1:IMM - UKF, 2:IMM - EKF, 3:UKF']);
% 设置 y 轴标签为误差
ylabel('error')
93

4.本算法原理

       在许多工程实践中,往往不能直接得到所需要的状态变量的真实值。例如雷达在探测目标时,可以通过回波信号等计算出目标的距离、速度和角度等信息。但雷达探测过程中会存在干扰(系统噪声、地杂波和非目标信号等)的问题,这些干扰会导致回波信号中夹杂有随机噪声。我们要在有随机噪声的回波信号中分离目标的运动状态量,准确的得到这个状态量往往是不可能的,只能根据观测信号估计这些状态变量。卡尔曼滤波就是这种通过估计或预测降低噪声影响的一种好的方法。特别是在线性系统中,卡尔曼滤波是最优的滤波算法。

       在轨迹跟踪问题中,系统状态通常随时间变化,并且受到过程噪声的影响;同时,对系统状态的观测也包含观测噪声。我们的目标是根据一系列的观测值来估计系统的真实状态。UKF 是一种用于非线性系统状态估计的滤波算法。与传统的扩展卡尔曼滤波(EKF)不同,UKF 不依赖于对非线性函数的线性化,而是通过一组确定性采样点(Sigma 点)来近似状态的概率分布,从而更准确地处理非线性问题。

       在kalman滤波算法中用到了状态转移方程和量测方程,被估计量随着时间的变化,呈现的是一个动态估计。在目标跟踪中,不需要知道目标的运动模型就能实时的修正目标的状态变量(速度、距离等),具有良好的适应性。但是当目标实施机动变化(突然加、减速或急转弯等),仅仅采用基本的kalman滤波算法往往得不到理想的结果。这时就需要采用自适应算法。交互多模型(IMM)就应用而生。

  目标交互多模型kalman滤波算法在机动目标跟踪领域得到广泛应用。IMM算法使用两个或者多个模型来描述工作过程中可能出现的状态,最后通过有效的加权融合进行系统状态估计,很好的克服了单个模型估计误差较大的问题。

       IMM 算法用于处理系统在不同模式下运行的情况。它假设系统存在多个可能的运行模式,每个模式对应一个不同的状态模型,通过在这些模型之间进行交互和切换,以适应系统模式的变化,从而提高状态估计的准确性。

5.完整程序

VVV

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2292068.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

YOLOV11-1:YoloV11-安装和CLI方式训练模型

YoloV11-安装和CLI方式训练模型 1.安装和运行1.1安装的基础环境1.2安装yolo相关组件1.3命令行方式使用1.3.1 训练1.3.2 预测 本文介绍yoloV11的安装和命令行接口 1.安装和运行 1.1安装的基础环境 GPU环境,其中CUDA是12.4版本 1.2安装yolo相关组件 # 克隆github…

Pluto固件编译笔记

前段时间我已经做到在电脑上交叉编译一个简单的c/c程序,然后复制到pluto上运行。 要做到这一点,其实参考adi pluto官网的wiki就能做到了。 但这样有几个问题,只能做到简易程序,如果程序复杂,要调用更多库而SYSROOT里…

弄懂Runable,Callable,Future之间的关系

JDK1.5之前,我们创建线程有这样两种方式 1.继承Thread类 2.连接实现Runnable接口 但是这两个方法我们都没有返回值,如果需要获取任务返回结果怎么办? 然后在JDK1.5之后,官方就提供了Callable和Future,有获取任务返…

Kafka中文文档

文章来源:https://kafka.cadn.net.cn 什么是事件流式处理? 事件流是人体中枢神经系统的数字等价物。它是 为“永远在线”的世界奠定技术基础,在这个世界里,企业越来越多地使用软件定义 和 automated,而软件的用户更…

Hugging Face GGUF 模型可视化

Hugging Face GGUF 模型可视化 1. Finding GGUF files (检索 GGUF 模型)2. Viewer for metadata & tensors info (可视化 GGUF 模型)References 无知小儿,仙家雄霸天下,依附强者才是唯一的出路。否则天地虽大,也让你们无路可走&#xff0…

小程序项目-购物-首页与准备

前言 这一节讲一个购物项目 1. 项目介绍与项目文档 我们这里可以打开一个网址 https://applet-base-api-t.itheima.net/docs-uni-shop/index.htm 就可以查看对应的文档 2. 配置uni-app的开发环境 可以先打开这个的官网 https://uniapp.dcloud.net.cn/ 使用这个就可以发布到…

【hot100】刷题记录(8)-矩阵置零

题目描述: 给定一个 m x n 的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。 示例 1: 输入:matrix [[1,1,1],[1,0,1],[1,1,1]] 输出:[[1,0,1],[0,0,0],[1,0,1]]示例 2…

一文讲解Spring中应用的设计模式

我们都知道Spring 框架中用了蛮多设计模式的: 工厂模式呢,就是用来创建对象的,把对象的创建和使用分开,这样代码更灵活。代理模式呢,是用一个代理对象来控制对真实对象的访问,可以在访问前后做一些处理。单…

springboot集成钉钉,发送钉钉日报

目录 1.说明 2.示例 3.总结 1.说明 学习地图 - 钉钉开放平台 在钉钉开放文档中可以查看有关日志相关的api,主要用到以下几个api: ①获取模板详情 ②获取用户发送日志的概要信息 ③获取日志接收人员列表 ④创建日志 发送日志时需要根据模板规定日志…

优选算法的灵动之章:双指针专题(一)

个人主页:手握风云 专栏:算法 目录 一、双指针算法思想 二、算法题精讲 2.1. 查找总价格为目标值的两个商品 2.2. 盛最多水的容器 ​编辑 2.3. 移动零 2.4. 有效的三角形个数 一、双指针算法思想 双指针算法主要用于处理数组、链表等线性数据结构…

PyQt4学习笔记1】使用QWidget创建窗口

目录 一、创建一个简单的 QWidget 窗口 二、设置窗口属性 1. 设置窗口标题 2. 设置背景颜色 3. 设置窗口大小和位置 4. 设置窗口模式 5. 关闭窗口 6. QWidget 及其子控件的样式 三、添加控件到 QWidget 1. 添加按钮 2. 添加标签 3. 添加文本框 4. 控件布局管理 四、自定义样式 …

pycharm 中的 Mark Directory As 的作用是什么?

文章目录 Mark Directory As 的作用PYTHONPATH 是什么PYTHONPATH 作用注意事项 Mark Directory As 的作用 可以查看官网:https://www.jetbrains.com/help/pycharm/project-structure-dialog.html#-9p9rve_3 我们这里以 Mark Directory As Sources 为例进行介绍。 这…

【C++】string类(上):string类的常用接口介绍

文章目录 前言一、C中设计string类的意义二、string类的常用接口说明1. string类对象的常见构造2. string类对象的容量操作2.1 size、capacity 和 empty的使用2.2 clear的使用2.3 reserve的使用2.4 resize的使用 3. string类对象的访问及遍历操作3.1 下标[ ] 和 at3.2 迭代器it…

从理论到实践:Linux 进程替换与 exec 系列函数

个人主页:chian-ocean 文章专栏-Linux 前言: 在Linux中,进程替换(Process Substitution)是一个非常强大的特性,它允许将一个进程的输出直接当作一个文件来处理。这种技术通常用于Shell脚本和命令行操作中…

3 卷积神经网络CNN

1 Image Classification (Neuron Version) – 1.1 Observation 1 1.2 Observation 2 如果不同的receptive field需要相同功能的neuron,可以使这些neuron共享参数 1.3 Benefit of Convolutional Layer 2 Image Classification (Filter Version) 不用担心filter大小…

详解Linux系统的终端(Terminal)以及分类(各种tty开头的设备文件)

目录 终端(Terminal)的概念和作用终端(Terminal)在Linux中被视为设备,每个终端有自己的设备文件tty三个字母的来源(tty名字的来源)如何查看当前终端的设备文件常见终端的分类1-串口终端02-虚拟控制台终端(Virtual Console)03-伪终端(Pseudo T…

强化学习数学原理(五)——随机近似与随机

一、Motivating example 首先有个random variable(随机变量)X,我们的目标就是求出他的expectation E(x),我们有一些iid的采样,xi,从1到n,求出均值 但是如果有很多数据,我需要等很久,把所有数据都…

线性数据结构:单向链表

放弃眼高手低,你真正投入学习,会因为找到一个新方法产生成就感,学习不仅是片面的记单词、学高数......只要是提升自己的过程,探索到了未知,就是学习。 考虑到可能有小白在合并代码时出现各种细节问题,本文…

线程互斥同步

前言: 简单回顾一下上文所学,上文我们最重要核心的工作就是介绍了我们线程自己的LWP和tid究竟是个什么,总结一句话,就是tid是用户视角下所认为的概念,因为在Linux系统中,从来没有线程这一说法,…

《苍穹外卖》项目学习记录-Day11订单统计

根据起始时间和结束时间,先把begin放入集合中用while循环当begin不等于end的时候,让begin加一天,这样就把这个区间内的时间放到List集合。 查询每天的订单总数也就是查询的时间段是大于当天的开始时间(0点0分0秒)小于…