大模型openai范式接口调用方法

news2025/2/3 16:11:46

本文将介绍如下内容:

  • 一、为什么选择 OpenAI 范式接口?
  • 二、调用 Openai 接口官方调用 Demo 示例
  • 三、自定义调用 Openai 接口

一、为什么选择 OpenAI 范式接口?

OpenAI 范式接口因其简洁、统一和高效的设计,成为了与大型语言模型(如 GPT 系列)交互的行业标准。它的优势在于:

  • 统一接口:无论是文本生成还是对话生成,都遵循统一标准,便于开发者快速上手和复用代码。
  • 简洁易用:基于 HTTP 请求的简单设计,让开发者能够轻松与模型交互,减少学习成本。
  • 高效管理:支持灵活调整生成参数,如温度、最大生成长度,优化模型输出。
  • 流式输出:支持实时生成,适合实时反馈的应用场景。

二、调用 Openai 接口官方调用 Demo 示例

1、Openai 接口官方文档如下:
  • OpenAI developer platform
  • https://platform.openai.com/docs/api-reference/introduction

其中主要接口有如下两种:

  • v1/chat/completions
  • v1/completions
2、chat/completions
  • Example request
curl https://api.openai.com/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer $OPENAI_API_KEY" \
  -d '{
    "model": "gpt-4o",
    "messages": [
      {
        "role": "developer",
        "content": "You are a helpful assistant."
      },
      {
        "role": "user",
        "content": "Hello!"
      }
    ]
  }'
  • Response
{
  "id": "chatcmpl-123",
  "object": "chat.completion",
  "created": 1677652288,
  "model": "gpt-4o-mini",
  "system_fingerprint": "fp_44709d6fcb",
  "choices": [{
    "index": 0,
    "message": {
      "role": "assistant",
      "content": "\n\nHello there, how may I assist you today?",
    },
    "logprobs": null,
    "finish_reason": "stop"
  }],
  "service_tier": "default",
  "usage": {
    "prompt_tokens": 9,
    "completion_tokens": 12,
    "total_tokens": 21,
    "completion_tokens_details": {
      "reasoning_tokens": 0,
      "accepted_prediction_tokens": 0,
      "rejected_prediction_tokens": 0
    }
  }
}
3、completions
  • Example request
curl https://api.openai.com/v1/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer $OPENAI_API_KEY" \
  -d '{
    "model": "gpt-3.5-turbo-instruct",
    "prompt": "Say this is a test",
    "max_tokens": 7,
    "temperature": 0
  }'

  • Response
{
  "id": "cmpl-uqkvlQyYK7bGYrRHQ0eXlWi7",
  "object": "text_completion",
  "created": 1589478378,
  "model": "gpt-3.5-turbo-instruct",
  "system_fingerprint": "fp_44709d6fcb",
  "choices": [
    {
      "text": "\n\nThis is indeed a test",
      "index": 0,
      "logprobs": null,
      "finish_reason": "length"
    }
  ],
  "usage": {
    "prompt_tokens": 5,
    "completion_tokens": 7,
    "total_tokens": 12
  }
}

三、自定义调用 Openai 接口

import requests

def chat_completions(api_url, api_key, messages, input_payload, stream=False):
    url = f"{api_url}/v1/chat/completions"

    headers = {
        "Authorization": f"Bearer {api_key}",
        "Content-Type": "application/json"
    }

    payload = {
        "model": "",
        "stream": stream,
        "messages": messages,
        "max_tokens": 8096,
        "temperature": 0.1,
        "presence_penalty": 0.5,
        "frequency_penalty": 0.8,
        "top_p": 0.75  # 0.75
    }
    payload.update(input_payload)

    if stream:
        response = requests.post(url, json=payload, headers=headers, stream=True)
        for line in response.iter_lines():
            if line:
                try:
                    data = line.decode("utf-8")
                    print(data)  # Process each chunk of the stream as needed
                except Exception as e:
                    print(f"Error processing stream data: {e}")
    else:
        response = requests.post(url, json=payload, headers=headers)
        return response.json()

def completions(api_url, api_key, prompt,input_payload, stream=False):
    url = f"{api_url}/v1/completions"

    headers = {
        "Authorization": f"Bearer {api_key}",
        "Content-Type": "application/json"
    }

    payload = {
        "model": "",
        "stream": stream,
        "prompt": prompt,
        "max_tokens": 8096,
        "temperature": 0.1,
        "presence_penalty": 0.5,
        "frequency_penalty": 0.8,
        "top_p": 0.75  #0.75
    }
    payload.update(input_payload)

    if stream:
        response = requests.post(url, json=payload, headers=headers, stream=True)
        for line in response.iter_lines():
            if line:
                try:
                    data = line.decode("utf-8")
                    print(data)  # Process each chunk of the stream as needed
                except Exception as e:
                    print(f"Error processing stream data: {e}")
    else:
        response = requests.post(url, json=payload, headers=headers)
        return response.json()


if __name__ == "__main__":
    # chat_completions - Example usage
    api_url = "http://127.0.0.1:20009"
    api_key = "EMPTY"
    model = "adapter1"  # "qwen2.5-32b"
    messages = [{"role": "user", "content": "随机给我一个1~10000的数字"}]
    payload = {
        "model": model,
    }
    response = chat_completions(api_url, api_key, messages, payload, stream=True)
    print(response)

    # completions-  Example usage
    api_url = "http://127.0.0.1:20009"
    api_key = "EMPTY"
    model = "qwen2.5-32b"
    prompt = "Tell me a joke."
    payload = {
        "model": model,
    }
    response = completions(api_url, api_key, prompt, payload, stream=True)
    print(response)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2291345.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

测压表压力表计量表针头针尾检测数据集VOC+YOLO格式4862张4类别

数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):4862 标注数量(xml文件个数):4862 标注数量(txt文件个数):4862 …

吴恩达深度学习——优化神经网络

本文来自https://www.bilibili.com/video/BV1FT4y1E74V,仅为本人学习所用。 文章目录 优化样本大小mini-batch 优化梯度下降法动量梯度下降法指数加权平均概念偏差纠正 动量梯度下降法 RMSpropAdam优化算法 优化学习率局部最优问题(了解) 优…

揭秘算法 课程导读

目录 一、老师介绍 二、课程目标 三、课程安排 一、老师介绍 学问小小谢 我是一个热爱分享知识的人,我深信知识的力量能够启迪思考,丰富生活。 欢迎每一位对知识有渴望的朋友,如果你对我的创作感兴趣,或者我们有着共同的兴趣点&…

17.[前端开发]Day17-形变-动画-vertical-align

1 transform CSS属性 - transform transform的用法 表示一个或者多个 不用记住全部的函数&#xff0c;只用掌握这四个常用的函数即可 位移 - translate <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta ht…

Python的那些事第五篇:数据结构的艺术与应用

新月人物传记&#xff1a;人物传记之新月篇-CSDN博客 目录 一、列表&#xff08;List&#xff09;&#xff1a;动态的容器 二、元组&#xff08;Tuple&#xff09;&#xff1a;不可变的序列 三、字典&#xff08;Dict&#xff09;&#xff1a;键值对的集合 四、集合&#xf…

Linux:线程池和单例模式

一、普通线程池 1.1 线程池概念 线程池&#xff1a;一种线程使用模式。线程过多会带来调度开销&#xff0c;进而影响缓存局部性和整体性能。而线程池维护着多个线程&#xff0c;等待着监督管理者分配可并发执行的任务。这避免了在处理短时间任务时创建与销毁线程的代价&…

【算法-位运算】位运算遍历 LogTick 算法

文章目录 1. 引入2. LogTick 优化遍历过程3. 题目3.1 LeetCode3097 或值至少为 K 的最短子数组 II3.2 LeetCode2411 按位或最大的最小子数组长度3.3 LeetCode3209 子数组按位与值为 K 的数目3.4 LeetCode3171 找到按位或最接近 K 的子数组3.5 LeetCode1521 找到最接近目标值的函…

【memgpt】letta 课程4:基于latta框架构建MemGpt代理并与之交互

Lab 3: Building Agents with memory 基于latta框架构建MemGpt代理并与之交互理解代理状态,例如作为系统提示符、工具和agent的内存查看和编辑代理存档内存MemGPT 代理是有状态的 agents的设计思路 每个步骤都要定义代理行为 Letta agents persist information over time and…

Python的那些事第九篇:从单继承到多继承的奇妙之旅

Python 继承&#xff1a;从单继承到多继承的奇妙之旅 目录 Python 继承&#xff1a;从单继承到多继承的奇妙之旅 一、引言 二、继承的概念与语法 三、单继承 四、多继承 五、综合代码示例 六、总结 一、引言 在编程的世界里&#xff0c;继承就像是一场神奇的魔法&#…

pandas(三)Series使用

一、Series基础使用 import pandasd {x:100,y:200,z:300} s1 pandas.Series(d) #将dict转化为Series print(s1)print("") l1 [1, 2, 3] l2 [a, b, c] s2 pandas.Series(l1, indexl2) #list转为Series print(s2)print("") s3 pandas.Series([11…

Windows电脑本地部署运行DeepSeek R1大模型(基于Ollama和Chatbox)

文章目录 一、环境准备二、安装Ollama2.1 访问Ollama官方网站2.2 下载适用于Windows的安装包2.3 安装Ollama安装包2.4 指定Ollama安装目录2.5 指定Ollama的大模型的存储目录 三、选择DeepSeek R1模型四、下载并运行DeepSeek R1模型五、使用Chatbox进行交互5.1 下载Chatbox安装包…

如何用微信小程序写春联

​ 生活没有模板,只需心灯一盏。 如果笑能让你释然,那就开怀一笑;如果哭能让你减压,那就让泪水流下来。如果沉默是金,那就不用解释;如果放下能更好地前行,就别再扛着。 一、引入 Vant UI 1、通过 npm 安装 npm i @vant/weapp -S --production​​ 2、修改 app.json …

2025最新在线模型转换工具onnx转换ncnn,mnn,tengine等

文章目录 引言最新网址地点一、模型转换1. 框架转换全景图2. 安全的模型转换3. 网站全景图 二、转换说明三、模型转换流程图四、感谢 引言 在yolov5&#xff0c;yolov8&#xff0c;yolov11等等模型转换的领域中&#xff0c;时间成本常常是开发者头疼的问题。最近发现一个超棒的…

算法每日双题精讲 —— 前缀和(【模板】一维前缀和,【模板】二维前缀和)

在算法竞赛与日常编程中&#xff0c;前缀和是一种极为实用的预处理技巧&#xff0c;能显著提升处理区间和问题的效率。今天&#xff0c;我们就来深入剖析一维前缀和与二维前缀和这两个经典模板。 一、【模板】一维前缀和 题目描述 给定一个长度为 n n n 的整数数组 a a a&…

记8(高级API实现手写数字识别

目录 1、Keras&#xff1a;2、Sequential模型&#xff1a;2.1、建立Sequential模型&#xff1a;modeltf.keras.Sequential()2.2、添加层&#xff1a;model.add(tf.keras.layers.层)2.3、查看摘要&#xff1a;model.summary()2.4、配置训练方法&#xff1a;model.compile(loss,o…

88.[4]攻防世界 web php_rce

之前做过&#xff0c;回顾&#xff08;看了眼之前的wp,跟没做过一样&#xff09; 属于远程命令执行漏洞 在 PHP 里&#xff0c;system()、exec()、shell_exec()、反引号&#xff08;&#xff09;等都可用于执行系统命令。 直接访问index.php没效果 index.php?sindex/think\a…

23.Word:小王-制作公司战略规划文档❗【5】

目录 NO1.2.3.4 NO5.6​ NO7.8.9​ NO10.11​ NO12​ NO13.14 NO1.2.3.4 布局→页面设置对话框→纸张&#xff1a;纸张大小&#xff1a;宽度/高度→页边距&#xff1a;上下左右→版式&#xff1a;页眉页脚→文档网格&#xff1a;勾选只指定行网格✔→ 每页&#xff1a;…

数据结构 树1

目录 前言 一&#xff0c;树的引论 二&#xff0c;二叉树 三&#xff0c;二叉树的详细理解 四&#xff0c;二叉搜索树 五&#xff0c;二分法与二叉搜索树的效率 六&#xff0c;二叉搜索树的实现 七&#xff0c;查找最大值和最小值 指针传递 vs 传引用 为什么指针按值传递不会修…

玩转ChatGPT:DeepSeek测评(科研思路梳理)

一、写在前面 DeepSeek-R1出圈了&#xff0c;把OpenAI的o3-mini模型都提前逼上线了&#xff08;还免费使用&#xff09;。 都号称擅长深度推理&#xff0c;那么对于科研牛马的帮助有多大呢&#xff1f; 我连夜试一试。 二、科研思路梳理 有时候我们牛马们做了一堆结果以后&…

python学opencv|读取图像(五十三)原理探索:使用cv.matchTemplate()函数实现最佳图像匹配

【1】引言 前序学习进程中&#xff0c;已经探索了使用cv.matchTemplate()函数实现最佳图像匹配的技巧&#xff0c;并且成功对两个目标进行了匹配。 相关文章链接为&#xff1a;python学opencv|读取图像&#xff08;五十二&#xff09;使用cv.matchTemplate()函数实现最佳图像…